• Title/Summary/Keyword: Particle charge

Search Result 408, Processing Time 0.025 seconds

State-of-charge Estimation for Lithium-ion Battery using a Combined Method

  • Li, Guidan;Peng, Kai;Li, Bin
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.129-136
    • /
    • 2018
  • An accurate state-of-charge (SOC) estimation ensures the reliable and efficient operation of a lithium-ion battery management system. On the basis of a combined electrochemical model, this study adopts the forgetting factor least squares algorithm to identify battery parameters and eliminate the influence of test conditions. Then, it implements online SOC estimation with high accuracy and low run time by utilizing the low computational complexity of the unscented Kalman filter (UKF) and the rapid convergence of a particle filter (PF). The PF algorithm is adopted to decrease convergence time when the initial error is large; otherwise, the UKF algorithm is used to approximate the actual SOC with low computational complexity. The effect of the number of sampling particles in the PF is also evaluated. Finally, experimental results are used to verify the superiority of the combined method over other individual algorithms.

An Analysis of Reflectivity and Response Time by Charge-to-Mass of Charged Particles in an Electrophoretic Display

  • Kim, Young-Cho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.4
    • /
    • pp.212-216
    • /
    • 2016
  • A reflective electronic display that uses negatively and positively charged particles has excellent bistability, a welldefined threshold voltage, and an extremely fast response time in comparison with other reflective displays. This type of display shows images through the movement of charged particles whose motion depends on the value of q/m (charge per mass for a particle). However, the ratio q/m can easily be changed by the forces acting on the charged particles in a cell of the panel and by friction that occurs after mixing oppositely charged particles and in the particle-insertion process. In this study, we propose a method to determine the appropriate range of q/m by using the reflectivity and response time of charged particles to modify q/m. In this manner, the electrical and optical properties of reflective displays are improved.

Efficiency of the Hybrid-type Air Purifier on Reducing Physical and Biological Aerosol (복합식 공기청정기의 물리적 및 생물학적 입자상 물질의 제거 효과)

  • Kim, Ki-Youn;Kim, Chi-Nyon;Kim, Yoon-Shin;Roh, Young-Man;Lee, Cheol-Min
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.5 s.92
    • /
    • pp.478-484
    • /
    • 2006
  • There was no significant difference in the CADR (Clean Air Delivery Rate) between physical aerosols, NaCl and smoke, and biological aerosols, airborne MS2 virus and P. fluorescens, which implicate that the hybrid-type of air purifier, applying the unipolar ion emission and the radiant catalytic ionization, imposed identical reduction effect on both physical aerosol and bioaerosol. Ventilation decreases the efficiency of air cleaning by unipolar ionization because high ventilation diminishes the particle concentration reduction effect. The particle removal efficiency decreases with increase in the chamber volume because of the augmented ion diffusion and higher ion wall loss rate. Particle size affects the efficiency of air ionization. The efficiency is high for particles with very small diameter because reduction of charge increases with particle size. If there is no increasing supply of ions, the efficiency of air cleaning by unipolar ionization increases with respect to initial concentration of particles because of the large space charge effect at high particle concentration and amplified electric field.

The Unipolar Charging Characteristics of Submicron Particles by Using an Indirect Photoelectric Charging (간접 광대전에 의한 서브 마이크론 입자의 단극하전 특성)

  • Choi, Young-Joo;Kim, Sang-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.6
    • /
    • pp.677-684
    • /
    • 2003
  • A new unipolar aerosol charger was developed by using an indirect photoelectric charging. The charger consists of two coaxial tubes, the inner UV lamp wrapped with stainless mesh and the outer Al cylinder. In this study, the effects of flow rate, particle size, and electric field were examined to search the optimal charging conditions with experimental and numerical methods. Monodisperse NaCl particles were fed into an annular space and the particles were charged by negative ions generated from Al plate exposed to the UV light. According to experimental results, the average number of elementary charge on particles increases from 2.5 to 5.5 as particle size increases from 50nm to 130nm at 2.5 L/min and 100V. The average number of elementary charge on particles was maximized at 25V as the electric potential between the stainless mesh and Al plate was varied from 0V to 400V.

Particle Detachment in Granular Media Filtration (입상여과에서 입자물질의 탈리)

  • Kim, Jinkeun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.5
    • /
    • pp.673-679
    • /
    • 2004
  • Particle breakthrough can occur by either the breakoff of previously captured particles (or flocs) or the direct passage of some influent particles through the filter. Filtration experiments were performed in a laboratory-scale filter using spherical glass beads with a diameter of 0.55 mm as collectors. A single type of particle suspension (Min-U-Sil 5, nearly pure $SiO_2$) and three different destabilization methods (pH control, alum and polymer destabilization) were utilized. The operating conditions were similar to those of standard media filtration practice: a filtration velocity of 5 m/h. To assess the possibility of particle detachment during the normal filtration, a hydraulic shock load (20% increase of flow rate) was applied after 4 hours of normal filtration. The magnitude of particle detachment was proportional to the particle size for non-Brownian particles. At the same time, less favorable particles, i.e., particles with larger surface charge, were easily detached during the hydraulic shock load. Therefore, proper particle destabilization before filtration is crucial for maximum particle removal as well as minimum particle breakthrough.

Numerical Analysis on Wire-Plate Electrostatic Precipitator Performance for Bioaerosol Capture: Effect of Ionic Wind (와이어-평판 형태의 전기집진기식 바이오-에어로졸 포집기 성능 수치해석: 이온풍의 영향)

  • Hyun Sik Choi;Gihyeon Yu;Jungho Hwang
    • Particle and aerosol research
    • /
    • v.19 no.3
    • /
    • pp.89-100
    • /
    • 2023
  • In our previous study, a wire-plate type electrostatic precipitator (ESP) was developed to collect bioaerosols of 100 nm size. In the study, various flow rates (40 ~ 100 L/min) and applied voltages (3 ~ 10 kV) were tested for experiment. In this study, numerical analysis was performed for the ESP of the previous study with the same flow rates and applied voltages, but with varying the size of bioaerosols to 0.04 ~ 2.5 ㎛. Overall, the numerical analysis results well predicted the experimental data. Bioaerosols of 0.1 ~ 0.5 ㎛ showed the minimum collection efficiency for all conditions because of low charge number. The effect of the ionic wind generated by the corona discharge was calculated. However, the ionic wind did not affect much the collection efficiency. The aerosol collection in the ESP of this study was due to the electrostatic force generated by particle charge in the electric field. This numerical study on the ESP can be used for the design and optimization of higher flow rate (> 100 L/min) ESP.

Analysis of charge and magnetic characteristics of brake wear particles (브레이크 마모입자의 하전 및 자성 특성 분석)

  • Chaeyeon Jo;Dongho Shin;Gunhee Lee;Sang-Hee Woo;Seokhwan Lee;Bangwoo Han;Jungho Hwang
    • Particle and aerosol research
    • /
    • v.19 no.2
    • /
    • pp.31-42
    • /
    • 2023
  • The charge and magnetic characteristics of LM (Low-metallic) and NAO (Non-asbestos-organic) brake wear particles were analyzed. The ratio of charged particles from total particles is about 86% of the LM pad and about 92% of the NAO pad. Number of charge per particle from the NAO pad is also higher than that of the LM pad. The ratio of magnetic particles from total particles increases with the particle size. The ratio of magnetic particles from the LM pad is about 15% for the particles with the size of 1 ㎛, and about 74% for ones with 5 ㎛. The ratio from the NAO pad is about 5% for the particles with the size from 0.5 ㎛ to 2 ㎛, and about 80% for the particles with 5 ㎛. Through the analysis of the components of the two pads with SEM-EDS (Scanning Electron Microscopy - Energy Dispersive X-ray Spectroscopy), it was found that the LM pad was occupied with more iron fraction than the NAO pad and that PM2.5-10 was occupied with more iron fraction than PM2.5. The particles smaller than 10 ㎛ (i.e. PM10) from the LM pad contained about 83% of charged particles, about 43% of magnetic particles, and about 93% of charged or magnetic particles. PM10 from the NAO pad contained about 88% of charged particles, about 15% of magnetic particles, and about 89% of charged or magnetic particles.

The Electric Field Analysis with Conducting Particle between Coaxial Cylindrical Electrodes in $SF_6$ Gas ($SF_6$ 가스 동축원통전극에서 금속이물 존재시의 전계해석)

  • 조국희;곽희로
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.168-171
    • /
    • 1999
  • This paper describes the influence of conducting particle within the coaxial cylindrical electrodes gap under alternating voltage condition investigated using charge simulation method. If the conducting particles precent in the gas insulated system, they can cause decrement of breakdown voltage. Thus, three dimensions computations of electric fields and electrostatic forces have been carried out according to particle location. The results show a good agreement with those of outside country, which can offer a practical reference on the insulation design of domestic GIS.

  • PDF

Effects of Electrohydrodynamic Flow and Turbulent Diffusion on Collection Efficiency of an Electrostatic Precipitator with Cavity Walls

  • Park, Seok-Joo;Park, Young-Ok;Kim, Sang-Soo;McMurry, Peter H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.97-103
    • /
    • 2001
  • The effects of the electrohydrodynamic (EHD) flow and turbulent diffusion on the collection efficiency of a model ESP composed of the plates with a cavity were studied through numerical computation. The electric field and ion space charge density were calculated by the Poisson equation of the electrical potential and the current continuity equation. The EHD flow field was solved by the continuity and momentum equations of the gas phase including the electrical body force induced by the movement of ions under the electric field. The RNG $k-{\varepsilon}$ model was used to analyze the turbulent flow. The particle concentration distribution was calculated from the convective diffusion equation of the particle phase. As the ion space charge increased, the particulate collection efficiency increased because the electrical potential increased over the entire domain in the ESP. The collection efficiency decreased and then increased, i.e. had a minimum value, as the EHD circulating flow became stronger when the electrical migration velocity of the charged particle was low. However, the collection efficiency decreased with the stronger EHD flow when the electrical migration of the particle was higher relatively. The collection efficiency of the model ESP increased as the turbulent diffusivity of the particle increased when the electrical migration velocity of the particle was low. However, the collection efficiency decreased for increasing the turbulent diffusivity when the electrical migration of the particle was higher relatively.

  • PDF