• 제목/요약/키워드: Particle characteristics

검색결과 3,874건 처리시간 0.03초

광학식 입자 계수기 내 샘플 노즐 직경이 측정 효율 및 특성에 미치는 영향에 대한 실험적 연구 (Experimental analysis on effects of nozzle diameter on detection characteristics of an optical particle counter)

  • 송현우;김태욱;송순호
    • 한국입자에어로졸학회지
    • /
    • 제13권4호
    • /
    • pp.159-164
    • /
    • 2017
  • The detection efficiency and characteristics of an optical particle counter (OPC), with various sample nozzle outlet diameters, were experimentally investigated. The OPC system, which was built with original design, was made up of a diode laser, two photodetectors, and a variety of optics such as a beam splitter and a concave mirror. The cone-shaped sampling nozzle was designed to be changeable to alter the outlet diameter, within the range of 1 to 3 mm. For samples, sets of polystyrene latex (PSL) standard particle with various sizes of 1 to $3{\mu}m$, were used. As a result, detection efficiency of the OPC greatly decreased with larger nozzle outlet diameter. Moreover, increased nozzle outlet diameter means broader sample flow, thus caused light interference and multiple scattering which results in abnormal high peaks in scattered light signal. The ratio of abnormal peaks to regular signal of single particle increased with larger nozzle outlet diameter.

Equipment Fan Filter Unit (EFFU)의 Particle 제거 성능평가 방법 (Test Method for Particle Removal Characteristic of Equipment Fan Filter Unit (EFFU))

  • 이양우;안강호
    • 반도체디스플레이기술학회지
    • /
    • 제11권2호
    • /
    • pp.59-62
    • /
    • 2012
  • This test method covers a procedure for measuring particle removal characteristic of equipment fan filter unit(EFFU) installed inside of semiconductor process equipments, FPD manufacturing equipments and so on. Since EFFU is a combination of air filter and the assembly of fan, motor and frame, the integrity of these parts is very important for the performance of EFFU. So a conventional particle removal test method for air filters is not suitable for EFFU particle removal performance. This test method defines an evaluation method for EFFU which is installed inside an enclosed space to remove particles that are generated inside process equipment. The particle removal performance of EFFUs is usually depending on the performance of filter media and air flow rate. To understand a performance of an EFFU, the filter media characteristic, air flow rate and the integrity of EFFU parts should be considered simultaneously. This test method is intended to demonstrate the system performance of an EFFU and successfully evaluated EFFU performance characteristics.

Research of liquid-solid two phase flow in centrifugal pump with crystallization phenomenon

  • Liu, Dong;Wang, Ya-Yun;Wang, Ying-Ze;Wang, Chun-Lin;Yang, Min-Guan
    • International Journal of Fluid Machinery and Systems
    • /
    • 제7권2호
    • /
    • pp.54-59
    • /
    • 2014
  • Particle Image Velocimetry combined with developed image processing method is adopted to study the liquid-solid two phase flow in the centrifugal pump impeller with crystallization phenomenon. The tracer particle is used to follow the liquid phase, which has the diameter between 8 to $12{\mu}m$. The crystal particle precipitates from the sodium sulfate solution does change the wavelength of the laser, and which has great laser scattering characteristics. The diameter of the crystal particle is larger than $20{\mu}m$. Through calculating the diameter of the particles in the image, the tracer particle and the crystal particle can be distinguished. By analyzing the experimental result, the following conclusion has been obtained. During the delay period, there is not any crystal particle and the pump performance has not been changed. As the crystallization process begins, the crystal nuclei appears from the supersaturation solution and grows larger with temperature decreasing, which has the tendency of moving towards the pressure side. The characteristics of liquid-solid two phase flow with crystallization phenomenon in the pump are obtained according to analysis of experimental results, and some guiding advices are presented to mitigate the crystallization phenomenon in pump impeller.

비식생 갯벌에서 퇴적물 입도에 따른 블루카본 저장 특성: 함평만과 동대만 (Characteristics of Blue Carbon Stock by Particle Size of Sediments in Unvegetated Tidal Flats : Hampyeong Bay and Dongdae Bay)

  • 박경덕;강동환;소윤환;조원기;김병우
    • 한국환경과학회지
    • /
    • 제32권3호
    • /
    • pp.181-189
    • /
    • 2023
  • In this study, sediment cores from unvegetated tidal flats in the Hampyeong Bay (west coastal wetland) and Dongdae Bay (south coastal wetland) were sampled, the blue carbon stock in the sediments was calculated, and the characteristics of the blue carbon stock were analyzed based on particle size of the sediments. The sediments in the Hampyeong Bay tidal flat had large particle size and low mud content, and the Dongdae bay tidal flat had small particle size and high mud content. The organic carbon content and blue carbon stock in the sediments were higher in the Dongdae tidal flat than in the Hampyeong Bay tidal flat. As a result of the regression function, in both the Hampyeong Bay and Dongdae Bay tidal flats, the sediments had the smaller particle size and higher mud contents the higher the organic carbon content and blue carbon stock. The sediments with smaller particle size had the larger specific surface area, so were feasible to adsorb and store more organic matters.

유체해석 프로그램을 이용한 골재의 입자크기 및 입도, 구성위치에 따른 배수층의 특성 평가 (Evaluation of characteristics of drainage layer according to particle size, particle size, and compositional location of aggregate using fluid analysis program)

  • 임창민;권현우;김영민;조도영;이건철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 가을 학술논문 발표대회
    • /
    • pp.147-148
    • /
    • 2022
  • Due to recent climate abnormalities, the form of rainfall is changing to localized torrential rains. Localized torrential rains cause flooding in urban areas. In addition, in various industrial fields, there are cases where materials necessary for the process are kept outdoors, and damage from material loss and flooding of stockyards occurs during heavy rain. Accordingly, it is necessary to introduce a drainage layer where flooding is expected. This drainage layer places the aggregate inside and allows rainwater to penetrate and drain into the voids between the aggregates. However, the amount of voids differs according to the particle size distribution and particle size of the aggregate, and the drainage performance varies according to the compositional location of the aggregate. Therefore, in this study, the drainage characteristics according to the particle size, particle size, and compositional location of aggregates are analyzed using a fluid analysis program.

  • PDF

모래의 파쇄성과 단입자강도 특성에 관한 기초적 연구 (A Basic Study on Crushability of Sands and Characteristics of Particle Strength)

  • 곽정민
    • 한국지반공학회논문집
    • /
    • 제15권5호
    • /
    • pp.193-204
    • /
    • 1999
  • 흙의 파쇄성과 관련된 지반공학적 문제에 있어서 입상재료의 강도-변형특성을 해명하기 위한 중요한 인자의 하나로 흙입자의 파쇄를 들 수 있다. 최근, 열대ㆍ아열대 지방의 해안을 중심으로 거대한 해양 유전개발이 진행되고 있으며 이 지역에 넓게 분포된 카보네이트계 모래의 거동이 기존의 실리카계 모래의 거동에 비해 두드러지게 다르다는 것이 현장에서의 문제로 대두되고 있다. 본 연구에서는 흙의 파쇄성과 연관지어 입상재료의 역학특성을 정립하는 첫 단계로서, 흙 입자파쇄의 기본이 되는 개별입자의 파쇄 강도특성을 명백히 하기 위하여 4종류의 서로 다른 모래를 이용하여 단입자 파쇄시험을 수행하였다. 단입자 파쇄강도는 모래의 입자형상, 광물성분 및 입경의 영향을 고려하였으며, 입도분포 곡선의 $D_{50}$에 대응하는 흙입자 강도는 카보네이트성분의 함유량이 많을수록, 입자형상이 뾰족할수록 작은 값을 나타냈다.

  • PDF

Effect of Particle Loading Ratio and Orifice Exit Velocity on a Particle-Laden Jet

  • Paik, Kyong-Yup;Yoon, Jung-Soo;Hwang, Jeong-Jae;Chung, Jae-Mook;Bouvet, Nicolas;Yoon, Young-Bin
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권3호
    • /
    • pp.296-304
    • /
    • 2011
  • In order to design a shear coaxial injector of solid particles with water, basic experiments on a particle laden jet are necessary. The purpose of the present study is to understand the effect of particle loading ratio on the particle spray characteristics (i.e. spreading angle, distribution of particle number density, velocity profiles, and particle developing region length). Hydro-reactive Al2O3 particles with a primary particle diameter of 35~50 ${\mu}m$ are used in this experiment. An automated particle feeder was designed to supply constant particle mass flowrates. Air is used as the carrier gas. To determine the air velocity at the orifice exit, tracers (aluminum oxide, 0.5~2 ${\mu}m$ primary diameter) are also supplied by a tracer feeder. A plain orifice type injector with 3 mm diameter, and 20 mm length was adopted. Particle image velocimetry is used to measure the mean and fluctuating velocity components along the axial and radial directions.