• 제목/요약/키워드: Particle characteristics

검색결과 3,874건 처리시간 0.031초

저압상태에서 공기역학적 렌즈를 이용한 In-Situ Particle Monitor의 성능특성 분석 (Investigation of the Performance Characteristics of an In-Situ Particle Monitor at Low Pressures Using Aerodynamic Lenses)

  • 배귀남
    • 대한기계학회논문집B
    • /
    • 제24권10호
    • /
    • pp.1359-1367
    • /
    • 2000
  • In-situ particle monitors(ISPMs) are widely used for monitoring contaminant particles in vacuum-based semiconductor manufacturing equipment. In the present research, the performance of a Particle Measuring Systems(PMS) Vaculaz-2 ISPM at low pressures has been studied. We generated the uniform sized methylene blue particle beams using three identical aerodynamic lenses in the center of the vacuum line, and measured the detection efficiency of the ISPM. The effects of particle size, particle concentration, mass flow rate, system pressure, and arrangement of aerodynamic lenses on the detection efficiency of the ISPM were examined. Results show that the detection efficiency of the ISPM greatly depends on the mass flow rate, and the particle Stokes number. We also found that the optimum Stokes number ranges from 0.4 to 1.9 for the experimental conditions.

감압상태에서의 In-Situ Particle Monitor의 성능특성 (Performance Characteristics of In-Situ Particle Monitors at Sub-Atmospheric Pressure)

  • 배귀남
    • 대한기계학회논문집B
    • /
    • 제22권11호
    • /
    • pp.1564-1570
    • /
    • 1998
  • In-situ particle monitors(ISPMs) are widely used for monitoring contaminant particles in vacuum-based semiconductor manufacturing equipment. In the present research, the performance of a Particle Measuring Systems(PMS) Vaculaz-2 ISPM at subatmospheric pressures has been studied. We created uniform upstream conditions of particle concentration and measured the detection efficiency, the lower detection limit, and the size response of the ISPM using uniform sized methylene blue aerosol particles. The effect of particle size, particle velocity, particle concentration, and system pressure on the detection efficiency was examined. Results show that the detection efficiency of the ISPM decreases with decreasing chamber pressure, and with increasing mass flow rate. The lower detection limit of the ISPM, determined at 50 % of the measured maximum detection efficiency, was found to be about $0.15{\sim}0.2{\mu}m$, which is similar to the minimum detectable size of $0.17{\mu}$ given by the manufacturer.

경사 정체점 유동이 적용된 미세 홀 레이저 가공 공정의 흄 오염입자 산포특성 연구 (Fume Particle Dispersion in Laser Micro-Hole Machining with Oblique Stagnation Flow Conditions)

  • 김경진;박중윤
    • 반도체디스플레이기술학회지
    • /
    • 제20권3호
    • /
    • pp.77-82
    • /
    • 2021
  • This numerical study focuses on the analysis of fume particle dispersion characteristics over the surface of target workpiece in laser micro-hole machining process. The effects of oblique stagnation flow over fume generating machining point are examined by carrying out a series of three-dimensional random particle simulations along with probabilistic particle generation model and particle drag correlation of low Reynolds number. Present computational model of fume particle dispersion is found to be capable of assessing and quantifying the fume particle contamination in precision hole machining which may influenced by different types of air flow patterns and their flow intensity. The particle size dependence on dispersion distance of fume particles from laser machining point is significant and the effects of increasing flow oblique angle are shown quite differently when slot blowing or slot suction flows are applied in micro-hole machining.

공기연소 분위기와 순산소 연소 분위기에서 입자 크기와 습도가 $CaCO_3$ 흡착제 입자의 반응특성에 미치는 영향 분석 (Analysis of the Effect of Particle Size and Humidity on Reaction Characteristics of $CaCO_3$ Sorbent Particle under Air and $O_2/CO_2$ Atmospheric Conditions)

  • 정성하;이강수;길상인;윤진한;김상수
    • 한국입자에어로졸학회지
    • /
    • 제10권2호
    • /
    • pp.75-82
    • /
    • 2014
  • It is necessary to find out the reaction characteristics of $CaCO_3$ sorbent particles in air and $O_2/CO_2$ atmospheric conditions in order that an in-furnace desulfurization technique can be applied to oxy-fuel combustion system. In this study, rate of change of GMD(geometric mean diameter) and specific surface area of $CaCO_3$ sorbent particles reacted in DTF(drop tube furnace) experimental setup were analyzed to investigate the effect of particle size and humidity on the reaction characteristics of them. In air atmospheric condition, calcination process occurs actively within shorter residence times as the particle size increases. On the contrary, in $O_2/CO_2$ atmospheric condition, a calcination process is delayed as particle size increases. The increment of humidity accelerates calcination process in an air atmospheric condition and increase rate of calcination in an $O_2/CO_2$ atmospheric condition.

Effects of feed form and particle size on growth performance, nutrient digestibility, carcass characteristics, and gastric health in growing-finishing pigs

  • Jo, Yun Yeong;Choi, Myung Jae;Chung, Woo Lim;Hong, Jin Su;Lim, Jong Seon;Kim, Yoo Yong
    • Animal Bioscience
    • /
    • 제34권6호
    • /
    • pp.1061-1069
    • /
    • 2021
  • Objective: This study was conducted to evaluate the effects of feed processing and particle size on growth performance, nutrient digestibility, carcass characteristics, and gastric health in growing-finishing pigs. Methods: A total of 360 growing pigs (22.64±0.014 kg initial body weight [BW]) were allocated to 1 of 6 treatments with 6 replicates by BW and sex, and 10 pigs were housed in one pen in a randomized complete block design. The BW and feed intake were recorded to calculate growth performance. For the digestibility trial, a total of 24 barrows with an initial BW of 33.65±0.372 kg were split into 6 treatments with a completely randomized design. Dietary treatments were designed by a 2×3 factorial arrangement of treatments based on two main factors, particle size (600, 750, 900 ㎛) and feed form (mash and pellet) of diet. Experimental diets were formulated to contain the requirements of the NRC (2012). Results: The BW and average daily gain were not changed by dietary treatments, and the feed intake of finishing pigs (wks 6 to 12) was increased when the pigs were fed a mash diet (p<0.05). For the overall period, the feed efficiency of pigs was improved with the pellet diet (p<0.01) and reduced particle size (p<0.05). The pellet diet had effects on increasing crude fat digestibility (p<0.01) relative to a mash diet, but there was no considerable change in dry matter and crude protein digestibilities by dietary treatments. In the evaluation of gastric health, a trend for an increased incidence of keratinization in the esophageal region was observed as particle size decreased (p = 0.07). Conclusion: Feed efficiency could be improved by pellet diet and reduced particle size. Nutrient digestibility, carcass characteristics, and gastric health were not affected by feed form, and particle size ranged from 600 to 900 ㎛.

Influence of Water Volume on Particle Characteristics of Iron Powder with Insulated Coating for a Compacted Magnetic Core

  • Funato, Norikazu;Yamamoto, Masayuki
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.160-161
    • /
    • 2006
  • Seasonal changes have been recognized in particle characteristics and forming characteristics of iron powder with insulated coating for a compacted magnetic core because of its high hygroscopicity, due to its phosphate coating and resin binder additives. For this reason, particle characteristics and molding characteristics of the powder with diverse water absorbtivity have been studied. The result shows that the higher the volume of absorbed water, the worse the fluidity becomes, resulting in the reduction in both springback during the molding process and expansion reduction after the heat treatment. The requirement on dimension accuracy for the finished product can be satisfied with an additional drying process on the material powder, which contributes to maintain its water volume constant.

  • PDF

열플라즈마에 의한 복합 나노 입자 제조 (Thermal Plasma Synthesis of Nano Composite Particles)

  • 정민희;김헌창
    • 공업화학
    • /
    • 제21권6호
    • /
    • pp.676-679
    • /
    • 2010
  • 이송식 직류 열플라즈마를 이용하여 ZrVFe 합금모재로부터 복합 나노 입자를 제조하여 플라즈마 가스 유량이 제조된 입자의 특성에 미치는 영향을 분석하였다. 입자의 특성은 전계방출 주사전자 현미경(FE-SEM), 입도 분석기(PSA), X선 분광기(EDS), X선 회절계(XRD), Brunauer-Emmett-Teller (BET) 비표면적 측정기를 사용하여 분석하였다. 플라즈마 가스 유량을 20 L/min에서 40 L/min으로 증가시키면 평균입자크기가 91 nm에서 55 nm로 감소하며 입도분포의 기하학적 편차가 줄어들었고 비표면적은 $200m^2/g$에서 $255m^2/g$으로 증가하였으며 제조된 입자의 조성에는 큰 영향을 미치지 못했지만 결정성이 향상되었다.

유전체 층을 이용한 수중 은 나노입자의 소형화 제조 (Finer Silver Nano-Particle Producing in Water Utilizing a Dielectric Bed)

  • 문재덕
    • 전기학회논문지
    • /
    • 제59권12호
    • /
    • pp.2250-2255
    • /
    • 2010
  • An fine silver particle has a variety of uses, such as in killing micrograms and as catalysts. Many techniques have been used for the production of the fine particles. Faraday cell, consisting of two silver electrodes in an electrolyte, is unique, but it is hard to get a very fine particle by this method. A finer silver nano-particle producing cell, utilizing a dielectric bed as a lower electric current and higher field controlling means, has been proposed and investigated. The I-V characteristics of the cell and effect of the dielectric bed on the producing finer silver nano-particles have been investigated. The I-V characteristics of the cell with the dielectric bed were different from that of the same system without the bed, due to the increased cell resistance and elevated electric field intensity. It is found that the proposed cell with the dielectric bed can produce finer silver nano-particles effectively, which, however, can be used as one of effective fine silver nano-particle producing means.

초청정 클린룸 난류유동장내에서의 오염입자 비정상 전파거동에 관한 연구 (Study on the Unsteady Contaminated Particle Transportation in the Flow Field for the Super Clean Room)

  • 오명도;임학규;배귀남
    • 대한기계학회논문집
    • /
    • 제14권2호
    • /
    • pp.430-439
    • /
    • 1990
  • Steady state turbulent airflow and unsteady characteristics of generation, transportation, and recovery behavior of contaminate particles in the simplified 2 dimensional Vertical Laminar Flow (VLF) type clean room was numerically simulated using the low Reynolds number k-over bar.epsilon- turbulent model. Characteristics of airflow in VLF type clean room are greatly affected by the recirculation zone around working surface. The recirculation zone must be considered at the time of clean room design because the recirculation zone whose area increases with increment of inlet velocity exerts bad influence upon the performance of clean room in terms of particle contamination. The location of maximum particle concentration changes from the location of particle source to the recirculation zone, while averaged particle concentration is reduced exponentially with time. Recovery time of clean room with spontaneous particle generation source is inversely proportional to inlet velocity. We introduce nondimensionalized recovery time through the dimensional analysis, which can indicates the general performance of clean room with design structure change. It was identified that .tau. is independent of inlet velocity and background concentration. Therefore .tau. can be the simple factor to compare the different structure of clean room in terms of dynamic response to contamination and becomes larger with better structure of clean room.

고온정밀주조용 인산염계 매몰재에 관한 연구(I);매몰재의 특성에 미치는 규사의 입도와 입도분포의 영향 (Study on Phosphate Investment for High Temperature Precision Castings(I);The Effect of Particle size and Distribution of Silica Sand on the characteristics of the Investment)

  • 안지홍;이종남
    • 한국주조공학회지
    • /
    • 제5권2호
    • /
    • pp.85-96
    • /
    • 1985
  • In order to investigate the effect of particle size and distribution of silica sand on the characteristics of investment, W/P ratio, setting time, temperature change during setting, setting expansion, thermal expansion and compressive strength of the investments were measured. In this experiment, magnesia clinker and mono ammonium phosphate were used as binder, and particle size and distribution of silica sand were classified for convinence into 10 categories. The main results obtained from this investigation were summerized as follows. 1. W/P ratio decreased with increase of particle size and evenness in distribution of sand grain. 2. Setting time decreased with increase of evenness in distribution of sand grain, and temperature during setting increased with evenness in distribution of sand grain. 3. Setting expansion decreased with increase of particle size, while it increased with evenness in distribution of sand grain. 4. Thermal expansion decreased with increase of particle size. 5. Compressive strength increased with increase of particle size and evenness in distribution of sand grain. From above results, G.F.N. 250 sand which contains 30% of 50-100 mesh could be recommended for investment casting.

  • PDF