• Title/Summary/Keyword: Particle beam

Search Result 392, Processing Time 0.027 seconds

Influence of the degradation of MgO protective layer on the Surface profiles and discharge characteristics in AC-PDP.

  • Lee, Soo-Beom;Jeoung, J.M.;Ko, B.D.;Oh, P.Y.;Moon, M.W.;Lee, J.H.;Lim, J.E.;Lee, H.J.;Han, Y.G.;Yoo, N.L.;Jeoung, S.H.;Son, C.G.;Choi, E.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1207-1210
    • /
    • 2005
  • The MgO protective layer provides protection from the discharge, lowers the discharge voltage and prolongs the AC-PDP lifetime. We have investigated the characteristics of degradation of MgO protective layer, which correlates to the image-sticking[1] and the lifetime in AC-PDP. The degraded MgO have been changed the surface morphology of MgO. It was found that panel lifetime depended on degradation of MgO protective.

  • PDF

A study of characteristics for Image sticking in AC - Plasma Display Panel

  • Han, Yong-gyu;Lee, S.B.;Jeong, S.H.;Son, C.G.;Yoo, N.L.;Lee, H.J.;Lim, J.E.;Lee, J.H.;Jeoung, J.M.;Ko, B.D.;Oh, P.Y.;Moon, M.W.;Choi, Eun-Ha
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.263-265
    • /
    • 2005
  • In the alternative current plasma display panel(AC-PDP) technology, it is very important to remove the image sticking for improving an image quality. In this paper, we have investigated the driving method of alternative current plasma display panel(AC-PDP) for preventing image sticking. We have investigated the driving method of alternative current plasma display panel(AC-PDP) for preventing image sticking. The preventing method of image sticking was proposed by adopting the Sticking Remove Pulse(SRP). The variation of brightness is most affected by the MgO to be formed at the surface of the phosphor layer. As a result, the image sticking is reduced when the driving method adopted an SRP.

  • PDF

Particle Beam Focusing Using Radiation Pressure (광압을 이용한 입자빔 집속)

  • Kim, Sang-Bok;Park, Hyung-Ho;Kim, Sang-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.1 s.232
    • /
    • pp.110-115
    • /
    • 2005
  • A novel technique for fine particle beam focusing under the atmospheric pressure is introduced using a radiation pressure assisted aerodynamic lens. To introduce the radiation pressure in the aerodynamic focusing system, a 25m plano-convex lens having 2.5mm hole at its center is used as an orifice. The particle beam width is measured for various laser power, particle size, and flow velocity. In addition, the effect of the laser characteristics on the beam focusing is evaluated comparing an optical tweezers type and pure gradient force type. For the pure aerodynamic focusing system, the particle beam width was decreased as increasing particle size and Reynolds number. Using the optical tweezers type, the particle beam width becomes smaller than that of the pure aerodynamic focusing system about $16\%,\;11.4\%\;and\;9.6\%$ for PSL particle size of $2.5{\mu}m,\;1.0{\mu}m,\;and\;0.5{\mu}m$, respectively. Particle beam width was minimized around the laser power of 0.2W. However, as increasing the laser power higher than 0.4W, the particle beam width was increased a little and it approached almost a constant value which is still smaller than that of the pure aerodynamic focusing system. For pure gradient force type, the reduction of the particle beam width was smaller than optical tweezers type but proportional to laser power. The radiation pressure effect on the particle beam width is intensified as Reynolds number decreases or particle size increases relatively.

Secondary Electron Emission Characteristics of Functional Layer in AC-PDP

  • Son, Chang-Gil;Han, Young-Gyu;Kim, Yong-Hee;Cho, Byeong-Seong;Hong, Young-Jun;Song, Ki-Baek;Bae, Young-Joo;Kim, In-Tae;Choi, Eun-Ha
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.736-739
    • /
    • 2009
  • We have studied that the secondary electron emission characteristics of functional layers which have different kinds of MgO sub-micrometer size powder in AC-PDP. We used cathodoluminescence(CL) and gamma focused ion beam (${\gamma}$-FIB) system for measurement of secondary electron emission characteristics. Also we made 6 inch test panel which applied functional layers for evaluation of discharge characteristics.

  • PDF