• 제목/요약/키워드: Particle Tracking Method

검색결과 205건 처리시간 0.023초

결합된 파티클 필터에 기반한 강인한 3차원 손 추적 (Robust 3D Hand Tracking based on a Coupled Particle Filter)

  • 안우석;석흥일;이성환
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권1호
    • /
    • pp.80-84
    • /
    • 2010
  • 손 추적 기술은 인간과 기계와의 효율적인 의사소통을 위한 손동작 인식 기술의 핵심 기반 기술이다. 최근의 손 추적 연구는 3차원 손 모델을 이용한 연구 방향에 초점을 맞추고 있고, 기존의 2차원 손 모델을 이용한 방법보다 강인한 추적 성능을 보이고 있다. 본 논문에서는 결합된 파티클 필터에 기반한 새로운 3차원 손 추적 방법을 제안한다. 이는 전역적 손 형상과 지역적 손가락 움직임을 분리하여 추정하고, 각각의 추정 결과를 서로의 사전 정보로 이용하여 기존의 방법보다 빠르고 강인한 추적을 가능하게 한다. 또한, 추적 성능 향상을 위해 색상과 에지를 함께 고려한 다중 증거 결합 방법을 적용한다. 실험결과, 제안하는 방법은 복잡한 배경이나 동작에서도 강인한 추적 결과를 보였다.

일치확률방식의 2-프레임 PTV 알고리듬 개발 (Development of a New 2-Frame Particle Tracking Algorithm Using Match Probability)

  • 백승조;이상준
    • 대한기계학회논문집
    • /
    • 제19권7호
    • /
    • pp.1741-1748
    • /
    • 1995
  • A new particle tracking algorithm using the concept of match probability between two consequent image frames has been developed to obtain an instantaneous 2-dimensional velocity field. A computer simulation has been carried out to check the performance and usefulness of the developed algorithm by comparing with the conventional 4-frame Particle Tracking Velocimetry(PTV) method. As a result the newly developed algorithm shows very good performance. Although the major part of the developed algorithm is time-consuming iterative updating routine of match probability, computational elapse time to get the resonable results is a very short compared with the 4-frame PTv.Additionally, the present 2-frame PTV algorithm recovers more velocity vectors and has higher dynamic range and lower error ratio compared with the conventional 4-frame PTV.

물체 특징과 실시간 학습 기반의 파티클 필터를 이용한 이동 로봇에서의 강인한 물체 추적 (Robust Object Tracking in Mobile Robots using Object Features and On-line Learning based Particle Filter)

  • 이형호;최학남;김형래;마승완;이재홍;김학일
    • 제어로봇시스템학회논문지
    • /
    • 제18권6호
    • /
    • pp.562-570
    • /
    • 2012
  • This paper proposes a robust object tracking algorithm using object features and on-line learning based particle filter for mobile robots. Mobile robots with a side-view camera have problems as camera jitter, illumination change, object shape variation and occlusion in variety environments. In order to overcome these problems, color histogram and HOG descriptor are fused for efficient representation of an object. Particle filter is used for robust object tracking with on-line learning method IPCA in non-linear environment. The validity of the proposed algorithm is revealed via experiments with DBs acquired in variety environment. The experiments show that the accuracy performance of particle filter using combined color and shape information associated with online learning (92.4 %) is more robust than that of particle filter using only color information (71.1 %) or particle filter using shape and color information without on-line learning (90.3 %).

배경 모델 학습을 통한 객체 분할/검출 및 파티클 필터를 이용한 분할된 객체의 움직임 추적 방법 (Object Segmentation/Detection through learned Background Model and Segmented Object Tracking Method using Particle Filter)

  • 임수창;김도연
    • 한국정보통신학회논문지
    • /
    • 제20권8호
    • /
    • pp.1537-1545
    • /
    • 2016
  • 실시간영상에서 객체의 분할 및 추적은 침입자 감시와 로봇의 물체 추적, 증강현실의 객체 추적등 다양한 분야에서 사용되고 있다. 본 논문에서는 초기 입력 영상의 일부를 학습하여 배경모델로 제작한 후, 배경제거 방법을 이용하여 움직이는 객체의 분할을 통해 객체를 검출하였다. 검출된 객체의 영역을 기반으로 HSV 색상히스토그램과 파티클 필터를 이용하여 객체의 움직임을 추적하는 방법을 제안한다. 제안한 분할 방법은 평균 배경모델을 이용한 방법보다 주변환경 변화의 영향을 적게 받으며, 움직이는 객체의 검출 성능이 더욱 우수하였다. 또한 단일 객체 및 다수의 객체가 존재하는 환경에서 추적 객체가 유사한 색상 객체와 겹치는 경우, 추적 객체의 영역 절반 이상이 가려지는 경우에도 지속적으로 추적하는 결과를 얻을 수 있었다. 2개의 비디오 영상을 사용한 실험결과는 평균 중첩율 85.9%, 추적률 96.3%의 성능을 보여준다.

Stereoscopic PTV 기법의 개발과 성능비교 연구 (Development of Stereoscopic PTV Technique and Performance Tests)

  • 이상준;윤전환
    • 대한기계학회논문집B
    • /
    • 제30권3호
    • /
    • pp.215-221
    • /
    • 2006
  • A stereoscopic particle tracking velocimetry (SPTV) technique based on the 2-frame hybrid particle tracking velocimetry (PTV) method was developed. The expansion of 2D PTV to SPTV is facilitated by the fact that the PTV method tracks individual particle centroids. To evaluate the performance and measurement accuracy of the present SPTV technique, it was applied to flow images of rigid body translation and synthetic standard images of jet shear flow and impinging jet flow. The data processing routine and measurement uncertainty of the SPTV technique are compared with those of conventional stereoscopic particle image velecimet.y (SPBV). In addition, the centroid translation effect of 2D particle image velocimetry (PIV) is defined and its effect on SPIV measurements is discussed. Compared to the SPIV method, the SPTV technique has inherited merits of concise and precise velocity evaluation procedures and provides better spatial resolution and measurement accuracy.

Robust Multi-person Tracking for Real-Time Intelligent Video Surveillance

  • Choi, Jin-Woo;Moon, Daesung;Yoo, Jang-Hee
    • ETRI Journal
    • /
    • 제37권3호
    • /
    • pp.551-561
    • /
    • 2015
  • We propose a novel multiple-object tracking algorithm for real-time intelligent video surveillance. We adopt particle filtering as our tracking framework. Background modeling and subtraction are used to generate a region of interest. A two-step pedestrian detection is employed to reduce the computation time of the algorithm, and an iterative particle repropagation method is proposed to enhance its tracking accuracy. A matching score for greedy data association is proposed to assign the detection results of the two-step pedestrian detector to trackers. Various experimental results demonstrate that the proposed algorithm tracks multiple objects accurately and precisely in real time.

움직임 벡터 기반 파티클 필터를 이용한 비트스트림 상에서의 객체 추적 (Object Tracking on Bitstreams Using a Motion Vector-based Particle Filter)

  • 이종석;오승준
    • 방송공학회논문지
    • /
    • 제23권3호
    • /
    • pp.409-420
    • /
    • 2018
  • 본 논문은 비트스트림 상에서 객체 추적을 위한 움직임 벡터 기반 파티클 필터(Motion Vector-based Particle Filter: MVPF)와 이를 이용한 객체 추적 시스템을 제안한다. MVPF는 일반적인 파티클 필터의 전이 모델과 관측 모델에 움직임 벡터를 사용하여 파티클의 개수를 유지하면서 정확도를 향상시킨다. 제안하는 객체 추적 시스템에서는 비트스트림에서 추출한 움직임 벡터의 히스토그램을 이용하여 객체의 상태를 예측한다. 제안하는 객체 추적 방법의 성능 평가를 위하여 MPEG 시험 영상과 VOT2013 영상에 적용하였을 때 기존 방법들보다 정확도, F-Measure, IOU(Intersection Of Union) 측면에서 평균적으로 각각 약 30%, 17%, 17% 증가하였다. 주관적 성능 평가를 위하여 추적결과를 박스(box) 형태로 표시하여 비교하였을 때 제안하는 방법이 모든 시험 영상에 대하여 기본 방법들보다 강인하게 객체를 추적한다.

클러터를 고려한 다중 센서 환경에서의 AMMPF를 이용한 기동 표적 추적 알고리즘 연구 (Multi-sensor Single Maneuvering Target Tracking in Clutter using AMMPF)

  • 김다솔;송택렬;오원천
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2004년도 추계학술발표대회논문집 제23권 2호
    • /
    • pp.479-482
    • /
    • 2004
  • In this article we consider a single maneuvering target Tracking algorithm in the presence of missing measurements and high clutter environments for multi-sensor target tracking problem. The tracking algorithm is based on the Particle filtering method to predict and update target states. Proposed is the AMM-PF(Auxiliary Multiple Model Particle Filter)[2] method for maneuvering target tracking to improve performance in track estimate and maintenance with a high level of uncertainty. The algorithm we propose is compared to the Extended Kalman Filter(EKF). A simulation study is included.

  • PDF

순차적 파티클 필터를 이용한 다중증거기반 얼굴추적 (Probabilistic Head Tracking Based on Cascaded Condensation Filtering)

  • 김현우;기석철
    • 로봇학회논문지
    • /
    • 제5권3호
    • /
    • pp.262-269
    • /
    • 2010
  • This paper presents a probabilistic head tracking method, mainly applicable to face recognition and human robot interaction, which can robustly track human head against various variations such as pose/scale change, illumination change, and background clutters. Compared to conventional particle filter based approaches, the proposed method can effectively track a human head by regularizing the sample space and sequentially weighting multiple visual cues, in the prediction and observation stages, respectively. Experimental results show the robustness of the proposed method, and it is worthy to be mentioned that some proposed probabilistic framework could be easily applied to other object tracking problems.

가우시안 입자 군집 최적화를 이용한 사람의 통합된 검출 및 추적 (Unified Detection and Tracking of Humans Using Gaussian Particle Swarm Optimization)

  • 안성태;김정중;이주장
    • 제어로봇시스템학회논문지
    • /
    • 제18권4호
    • /
    • pp.353-358
    • /
    • 2012
  • Human detection is a challenging task in many fields because it is difficult to detect humans due to their variable appearance and posture. Furthermore, it is also hard to track the detected human because of their dynamic and unpredictable behavior. The evaluation speed of method is also important as well as its accuracy. In this paper, we propose unified detection and tracking method for humans using Gaussian-PSO (Gaussian Particle Swarm Optimization) with the HOG (Histograms of Oriented Gradients) features to achieve a fast and accurate performance. Keeping the robustness of HOG features on human detection, we raise the process speed in detection and tracking so that it can be used for real-time applications. These advantages are given by a simple process which needs just one linear-SVM classifier with HOG features and Gaussian-PSO procedure for the both of detection and tracking.