• Title/Summary/Keyword: Particle Tracking Method

Search Result 205, Processing Time 0.025 seconds

Optimum shape and process design of single rotor equipment for its mixing performance using finite volume method

  • Kim, Nak-Soo;Lee, Jae-Yeol
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.4
    • /
    • pp.289-297
    • /
    • 2009
  • We numerically analyzed flow characteristics of the polymer melt in the screw equipment using a proper modeling and investigated design parameters which have influence on the mixing performance as the capability of the screw equipment. We considered the non-Newtonian and non-isothermal flow in a single rotor equipment to investigate the mixing performance with respect to screw dimensions as shape parameter of the single rotor equipment and screw speed as process parameter. We used Bird-Carreau-Yasuda model as a viscous model of the polymer melt and the particle tracking method to investigate the mixing performance in the screw equipment and considered four mixing performance indexes: residence time distribution, deformation rate, total strain and particle standard deviation as a new mixing performance index. We compared these indexes to determine design parameters and object function. On basis of the analysis results, we carried out the optimal design by using the response surface method and design of experiments. In conclusion, the differences of results between the optimal value and numerical analysis are about 5.0%.

A CPU and GPU Heterogeneous Computing Techniques for Fast Representation of Thin Features in Liquid Simulations (액체 시뮬레이션의 얇은 특징을 빠르게 표현하기 위한 CPU와 GPU 이기종 컴퓨팅 기술)

  • Kim, Jong-Hyun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.24 no.2
    • /
    • pp.11-20
    • /
    • 2018
  • We propose a new method particle-based method that explicitly preserves thin liquid sheets for animating liquids on CPU-GPU heterogeneous computing framework. Our primary contribution is a particle-based framework that splits at thin points and collapses at dense points to prevent the breakup of liquid on GPU. In contrast to existing surface tracking methods, the our method does not suffer from numerical diffusion or tangles, and robustly handles topology changes on CPU-GPU framework. The thin features are detected by examining stretches of distributions of neighboring particles by performing PCA(Principle component analysis), which is used to reconstruct thin surfaces with anisotropic kernels. The efficiency of the candidate position extraction process to calculate the position of the fluid particle was rapidly improved based on the CPU-GPU heterogeneous computing techniques. Proposed algorithm is intuitively implemented, easy to parallelize and capable of producing quickly detailed thin liquid animations.

RGB Camera-based Real-time 21 DoF Hand Pose Tracking (RGB 카메라 기반 실시간 21 DoF 손 추적)

  • Choi, Junyeong;Park, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.19 no.6
    • /
    • pp.942-956
    • /
    • 2014
  • This paper proposes a real-time hand pose tracking method using a monocular RGB camera. Hand tracking has high ambiguity since a hand has a number of degrees of freedom. Thus, to reduce the ambiguity the proposed method adopts the step-by-step estimation scheme: a palm pose estimation, a finger yaw motion estimation, and a finger pitch motion estimation, which are performed in consecutive order. Assuming a hand to be a plane, the proposed method utilizes a planar hand model, which facilitates a hand model regeneration. The hand model regeneration modifies the hand model to fit a current user's hand, and improves robustness and accuracy of the tracking results. The proposed method can work in real-time and does not require GPU-based processing. Thus, it can be applied to various platforms including mobile devices such as Google Glass. The effectiveness and performance of the proposed method will be verified through various experiments.

Robust Object Tracking for Scale Changes (스케일에 강건한 물체 추적 기법)

  • Cheon, Gi-Hong;Kang, Hang-Bong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.6
    • /
    • pp.194-203
    • /
    • 2008
  • Though conventional video surveillance systems such as CCTV depended on operators, recently developed intelligent surveillance systems no longer needed operators. However, these new intelligent surveillance systems have their own problems such as Occlusion, changing scale of target object, and affine. This paper handled information damage caused by changing the scale of the target object among other objects. Due to the change of the scale, the inaccurate information of target can be obtained when we update the background information. To handle this problem, we introduce a solution for information damage caused by problem of changing scale of target object located among other objects. Specifically, we suggest multi-stage sampling particle filter based advanced MSER for object tracking system. Through this method, the problem caused by changing scale of target can be avoided.

Uniformity Prediction of Mist-CVD Ga2O3 Thin Film using Particle Tracking Methodology (입자추적 유동해석을 이용한 초음파분무화학기상증착 균일도 예측 연구)

  • Ha, Joohwan;Park, Sodam;Lee, Hakji;Shin, Seokyoon;Byun, Changwoo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.101-104
    • /
    • 2022
  • Mist-CVD is known to have advantages of low cost and high productivity compared to ALD and PECVD methods. It is capable of reacting to the substrate by misting an aqueous solution using ultrasonic waves under vacuum-free conditions of atmospheric pressure. In particular, Ga2O3 is regarded as advanced power semiconductor material because of its high quality of transmittance, and excellent electrical conductivity through N-type doping. In this study, Computational Fluid Dynamics were used to predict the uniformity of the thin film on a large-area substrate. And also the deposition pattern and uniformity were analyzed using the flow velocity and particle tracking method. The uniformity was confirmed by quantifying the deposition cross section with an FIB-SEM, and the consistency of the uniformity prediction was secured through the analysis of the CFD distribution. With the analysis and experimental results, the match rate of deposition area was 80.14% and the match rate of deposition thickness was 55.32%. As the experimental and analysis results were consistent, it was confirmed that it is possible to predict the deposition thickness uniformity of Mist-CVD.

Object Tracking Based on Exactly Reweighted Online Total-Error-Rate Minimization (정확히 재가중되는 온라인 전체 에러율 최소화 기반의 객체 추적)

  • JANG, Se-In;PARK, Choong-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.53-65
    • /
    • 2019
  • Object tracking is one of important steps to achieve video-based surveillance systems. Object tracking is considered as an essential task similar to object detection and recognition. In order to perform object tracking, various machine learning methods (e.g., least-squares, perceptron and support vector machine) can be applied for different designs of tracking systems. In general, generative methods (e.g., principal component analysis) were utilized due to its simplicity and effectiveness. However, the generative methods were only focused on modeling the target object. Due to this limitation, discriminative methods (e.g., binary classification) were adopted to distinguish the target object and the background. Among the machine learning methods for binary classification, total error rate minimization can be used as one of successful machine learning methods for binary classification. The total error rate minimization can achieve a global minimum due to a quadratic approximation to a step function while other methods (e.g., support vector machine) seek local minima using nonlinear functions (e.g., hinge loss function). Due to this quadratic approximation, the total error rate minimization could obtain appropriate properties in solving optimization problems for binary classification. However, this total error rate minimization was based on a batch mode setting. The batch mode setting can be limited to several applications under offline learning. Due to limited computing resources, offline learning could not handle large scale data sets. Compared to offline learning, online learning can update its solution without storing all training samples in learning process. Due to increment of large scale data sets, online learning becomes one of essential properties for various applications. Since object tracking needs to handle data samples in real time, online learning based total error rate minimization methods are necessary to efficiently address object tracking problems. Due to the need of the online learning, an online learning based total error rate minimization method was developed. However, an approximately reweighted technique was developed. Although the approximation technique is utilized, this online version of the total error rate minimization could achieve good performances in biometric applications. However, this method is assumed that the total error rate minimization can be asymptotically achieved when only the number of training samples is infinite. Although there is the assumption to achieve the total error rate minimization, the approximation issue can continuously accumulate learning errors according to increment of training samples. Due to this reason, the approximated online learning solution can then lead a wrong solution. The wrong solution can make significant errors when it is applied to surveillance systems. In this paper, we propose an exactly reweighted technique to recursively update the solution of the total error rate minimization in online learning manner. Compared to the approximately reweighted online total error rate minimization, an exactly reweighted online total error rate minimization is achieved. The proposed exact online learning method based on the total error rate minimization is then applied to object tracking problems. In our object tracking system, particle filtering is adopted. In particle filtering, our observation model is consisted of both generative and discriminative methods to leverage the advantages between generative and discriminative properties. In our experiments, our proposed object tracking system achieves promising performances on 8 public video sequences over competing object tracking systems. The paired t-test is also reported to evaluate its quality of the results. Our proposed online learning method can be extended under the deep learning architecture which can cover the shallow and deep networks. Moreover, online learning methods, that need the exact reweighting process, can use our proposed reweighting technique. In addition to object tracking, the proposed online learning method can be easily applied to object detection and recognition. Therefore, our proposed methods can contribute to online learning community and object tracking, detection and recognition communities.

Nonlinear Bearing Only Target Tracking Filter (방위각 정보만을 이용한 비선형 표적추적필터)

  • Yoon, Jangho
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.1
    • /
    • pp.8-14
    • /
    • 2016
  • The optimal estimation of a bearing only target tracking problem be achieved through the solution of the Fokker-Planck equation and the Bayesian update. Recently, a nonlinear filtering algorithm using a direct quadrature method of moments in which the associated Fokker-Planck equation can be propagated efficiently and accurately was proposed. Although this approach has demonstrated its promising in the field of nonlinear filtering in several examples, the "degeneracy" phenomenon, similar to that which exists in a typical particle filter, occasionally appears because only the weights are updated in the modified Bayesian rule in this algorithm. Therefore, in this paper to enhance the performance, a more stable measurement update process based upon the update equation in the Extended Kalman filters and a more accurate initialization and re-sampling strategy for weight and abscissas are proposed. Simulations are used to show the effectiveness of the proposed filter and the obtained results are promising.

A method for multiple identical object tracking (동일한 다중 물체 추적 기법)

  • Chun, Gi-Hong;Kang, Hang-Bong
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.679-680
    • /
    • 2006
  • 이 논문에서는 가장 많이 알려진 tracking 알고리즘인 Particle-Filter 의 단점을 motion vector 를 기반으로 예측한 sampling 방법과 K-means clustering 을 이용하여 해결하려고 한다. Tracking 에서의 문제는 다중의 유사한 객체들이 merge 후 split 될 때 제대로 추적을 하지 못하고 한 객체만을 추적 한다는 데에 있었다. 그리고 split 되어 객체별로 추적이 가능하더라도 이전에 추적한 객체를 올바로 labeling 하지 못하는 문제가 있다는 것이다. 이 merge-split 문제는 개량된 K-means clustering 을 이용하고, labeling 문제는 motion vector 를 이용한 개량된 sampling 방법으로 개선하였다.

  • PDF

Vision-Based Indoor Object Tracking Using Mean-Shift Algorithm (평균 이동 알고리즘을 이용한 영상기반 실내 물체 추적)

  • Kim Jong-Hun;Cho Kyeum-Rae;Lee Dae-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.8
    • /
    • pp.746-751
    • /
    • 2006
  • In this paper, we present tracking algorithm for the indoor moving object. We research passive method using a camera and image processing. It had been researched to use dynamic based estimators, such as Kalman Filter, Extended Kalman Filter and Particle Filter for tracking moving object. These algorithm have a good performance on real-time tracking, but they have a limit. If the shape of object is changed or object is located on complex background, they will fail to track them. This problem will need the complicated image processing algorithm. Finally, a large algorithm is made from integration of dynamic based estimator and image processing algorithm. For eliminating this inefficiency problem, image based estimator, Mean-shift Algorithm is suggested. This algorithm is implemented by color histogram. In other words, it decide coordinate of object's center from using probability density of histogram in image. Although shape is changed, this is not disturbed by complex background and can track object. This paper shows the results in real camera system, and decides 3D coordinate using the data from mean-shift algorithm and relationship of real frame and camera frame.

Velocity Measurement of PIV Using a General Light Source (일반 광원을 이용한 PIV의 속도 측정)

  • 이교태
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.559-564
    • /
    • 1999
  • A particle image velocimetry is the representative technique for measuring flow velocities at whole field simultaneously. The present study adopted the PTV method for velocity acquisition in a square enclosure with initially isothermal fluid by using a general lamp-based sheet light source. The enclosure was composed of hot and cold vertical wall and was confined by two horizon-tal adiabatic walls. The drift velocities were measured and the drift was visualized by PTV for a rayleigh number of 5.28{\times}10^8.$ Obtained instant simulataneous velocity vectors show flow pattern and the result of horizontal velocity profile agree well with the numerical result.

  • PDF