• Title/Summary/Keyword: Particle Temperature

Search Result 2,899, Processing Time 0.037 seconds

High Luminance $Zn_2$$SiO_4$:Mn Phosphors for in PDP Application (고상법에 의한 PDP용 고휘도 $Zn_2$$SiO_4$:Mn 형광체 제조)

  • Jeon, Il-Un;Son, Gi-Seon;Jeong, Yang-Seon;Kim, Chang-Hae;Park, Hui-Dong
    • Korean Journal of Materials Research
    • /
    • v.11 no.3
    • /
    • pp.227-235
    • /
    • 2001
  • In this work, Zn$_2$SiO$_4$:Mn phosphors were prepared by solid state reaction. The effect of sintering/reduction temperature, flow rate of H$_2$-5%/$N_2$-95% mix gas, and ball milling conditions have been investigated on the sake of PDP(Plasma Display Panel) application. The characteristics such as particle morphology and photoluminescence of prepared phosphors were compared to those of commercial Zn$_2$SiO$_4$:Mn Phosphors. It was found that the Phosphor synthesized at 130$0^{\circ}C$ with 0.08 Mn concentration had a maximum brightness, This brightness was increased more 20% by reduction treatment under 100me/min flow rate of 5%H$_2$-95%$N_2$ mixed gas. The size of particles decreased under 3$\mu\textrm{m}$ after ball milling. Especially, higher luminescence was obtained in our Zn$_2$SiO$_4$:Mn phosphors than commercial Zn$_2$SiO$_4$:Mn phosphors, so that they are able to be applied for PDP.

  • PDF

Hydrogen production using CdS-TiO2 composite photocatalysts (CdS-TiO2 복합 광촉매계에 의한 수소제조)

  • Kim, Soo-Sun;Jang, Jum-Suk;So, Won-Wook;Kim, Kwang-Je;Moon, Sang-Jin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.11 no.4
    • /
    • pp.161-169
    • /
    • 2000
  • In the case of photocatalytic hydrogen production from water, the performance-property relationships of CdS-TiO2 film type composite catalysts were investigated. To control the physical properties of the primary particles, the mixture of CdS and TiO2 nano-sols prepared by the sol-gel method at room temperature was hydrothermally treated at 240oC for 12hr. The film electrodes were prepared by the casting method. The photocurrents measured by a photoelectrochemical method and the hydrogen production rates measured by a photochemical method were closely dependent on the physical properties such as crystalline form, primary particle size and CdS/TiO2 mole ratio, and these varied in the range of 1.2~2.6 mA/cm2 and $1.0{\sim}1.6{\times}10-3mol/hr$, respectively.

  • PDF

Effect of Calcination Temperatures on the Structure and Electrochemical Characterization of Li(Ni0.5Mn0.3Co0.2)O2 as Cathode Material by Supercritical Hydrothermal Synthesis Method (초임계 수열법으로 합성한 Li(Ni0.5Mn0.3Co0.2)O2 양극 활물질의 소성 온도영향에 따른 구조 및 전기화학적 특성)

  • Choo, Soyeon;Beom, YunGyeong;Kim, Sungsu;Han, Kyooseung
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.3
    • /
    • pp.151-156
    • /
    • 2013
  • As the cathode material for li-ion battery, $LiNi_{0.5}Mn_{0.3}Co_{0.2}O_2$ were synthesized by supercritical hydrothermal method and calcined $850^{\circ}C$ and $900^{\circ}C$ for 10hrs in air. The effect of temperature in the heat treatment on the powder and its performance were studied of xray diffraction pattern, SEM-image, physical properties and electrochemical behaviors. As a result, calcined at $900^{\circ}C$ material particle size more increase than calcined at $850^{\circ}C$ material, especially shows excellent electrochemical performance with initial reversible specific capacity of 163.84 mAh/g (0.1C/2.0-4.3V), 186.87 mAh/g (0.1C/2.0-4.5V) and good capacity retention of 91.49% (0.2C/2.0-4.3V) and 90.36% (0.2C/2.0-4.5V) after 50th charge/discharge cycle.

A Study on Properties of Domestic Fly Ash and Utilization as an Insulation material (국산 Fly Ash의 특성 및 단열재로의 이용에 관한 연구)

  • 박금철;임태영
    • Journal of the Korean Ceramic Society
    • /
    • v.20 no.2
    • /
    • pp.135-146
    • /
    • 1983
  • This study is to investigate the properties of domestic fly ash for utilization as data in regard to fly ash which is by-product of domestic coal powder plants and the possibility of utilization as insulation material of domestic fly ash. Composition refractoriness size distribution density contents of hollow particles and crystalline phase were examined as the properties of domestic fly ash. As to the fired test pieces of fly ash by itself that varied contents of hollow particles with four kinds and of the fly ash-clay-saw dust system linear shrinkage bulk density app. porosity compressive strength thermal conductivity and structures were investigated for the possibility of utilization as an insulation material. The results are as follows : 1. The properties of the fly ash I) The constituent particle of the fly ash is spherical and it contains not a few hollow particles (floats by water 0.30-0.50 floats by $ZnCl_2$ aq.(SpG=1.71) 6.97-16.72%). ii) The chemical compositions of fly ash are $SiO_243.9-54.1%$ , $Al_2O_321.0-30.7%$ Ig loss is 7.4-24.1% and the principal of Ig loss is unburned carbon. iii) Fly ash was not suitable to use for mortar and concrete mixture because Ig. loss value is higher than 5% 2. Utilization as insulation material I) The test pieces of original fly ash floats by water floats by ZnCl2 aq(SpG=1.71) p, p t by ZnCl2 aq.(SpG=1.71) that were fired at 110$0^{\circ}C$ represented 0.11-0.18 kcal/mh$^{\circ}$ C as thermal conductivity value. ii) The test pieces which (76.5-85.5) wt% fly ash-(8.5, 9.5) wt% clay-(5.0-15.0) wt% saw dust system(68.0-72.0) wt% fly ash -(17.0-18.0)wt% clay-(10.0-15.0) wt% saw dust system and 59.5 wt% fly ash-25.5 wt% clay-15.0wt% saw dust system were fired at 110$0^{\circ}C$ the thermal conductivity was less than 0.1Kcal/mh$^{\circ}$ C. iii) In view of thermal conductivity and economic aspect insulation materials which added saw dust as blowing agent and clay as inorganic binder are better than that of fly ash as it is or separated hollow fly ash particles. iv) When the saw dust contents increased in the (59.5-90.0) wt% saw dust system and when amount of clay de-creased and firing temperature decreased under the condition of equal addition of saw dust app. porosity increased but bulk density compressive strength and thermal conductivity decreased.

  • PDF

Characterization of Silica Sol Particle Prepared by Sol-Gel Reaction from Sodium Silicate Solution (소디움실리케이트 수용액(水溶液)으로부터 솔-젤 반응(反應)에 의해 제조(製造)된 실리카 솔 입자특성(粒子特性) 고찰(考察))

  • Kim, Chul-Joo;Kim, Sung-Don;Jang, Hee-Dong;Yoon, Ho-Sung
    • Resources Recycling
    • /
    • v.18 no.6
    • /
    • pp.30-37
    • /
    • 2009
  • Silica sol was prepared from the mixture of sodium silicate solution and oxidized silicate solution in which sodium had been removed by sol-gel process. The properties of sodium silicate solution and silicate solution thus prepared were characterized by yellow silicomolydate method. Moreover, the formation and growth of silica sol from sodium silicate solution was investigated. Sodium silicate solution with 2% of $SiO_2$ contains 95% of reactive silicate, and 50% of reactive silicate participates sol-gel reaction. From the results of FT-IR analysis, it was found that the intensity of silanol bond decreased and the intensity of siloxane bond increased with increasing reaction temperature. Zeta potential of silica sol prepared at each condition was -40~-60 mV and it could be known that silica sol in this study was well dispersed. The silica sol with 5~10 nm size could be prepared by heating the mixed solution of sodium silicate and silicate solution. And the silica sol grew into about 20 nm as silicate solution was added to silica sol solution.

Synthesis and Crystallization of Amorphous Calcium Carbonate by Gas-Liquid Reaction of System Ca($OH_2 O$)-$H_2$-$CO_2$ (Ca($OH_2$)-$H_2 O$-$CO_2$계의 기액반응으로부터 비정질 탄산칼슘의 합성 및 결정화)

  • Im, Jae-Seok;Kim, Ga-Yeon;Im, Goeng
    • The Journal of Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.73-87
    • /
    • 2004
  • The synthesis and crystallization of amorphous calcium carbonate($CaCO_3$.$nH_2 O$) obtained from gas-liquid reaction between aqueous solution of calcium hydroxide and carbon dioxide at 15~$50^{\circ}C$ are investigated by electrical conductometry, XRD and TEM. The results are as follows: The initial reaction products prior to the formation of precipitated calcium carbonate is amorphous calcium carbonate. The electrical conductivity values in the slurry are decreased during the formation of amorphous calcium carbonate which covers particle surface of calcium hydroxide and retard the dissolution of calcium hydroxide into the solution. that amorphous calcium carbonate is unstable in the aqueous solution and crystallizes finally to calcite by the through-solution reaction. While amorphous calcium carbonate crystallizes into chain-like calcite, the conductivity values are recovered rapidly and the apparent viscosity of slurry containing higher concentration of calcium hydroxide increase. At below pH 9.5, chain-like calcite separates into individual particles to form precipitated calcium carbonate. The formation and synthetic temperature range of amorphous calcium carbonate is most suitable a primary decreasing step(a-step) at $15^{\circ}C$ in the electrical conductometry.

  • PDF

Cu2ZnSn(S,Se)4 Thin Film Solar Cells Fabricated by Sulfurization of Stacked Precursors Prepared Using Sputtering Process

  • Gang, Myeng Gil;Shin, Seung Wook;Lee, Jeong Yong;Kim, Jin Hyeok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.97-97
    • /
    • 2013
  • Recently, Cu2ZnSn(S,Se)4 (CZTSS), which is one of the In- and Ga- free absorber materials, has been attracted considerable attention as a new candidate for use as an absorber material in thin film solar cells. The CZTSS-based absorber material has outstanding characteristics such as band gap energy of 1.0 eV to 1.5 eV, high absorption coefficient on the order of 104 cm-1, and high theoretical conversion efficiency of 32.2% in thin film solar cells. Despite these promising characteristics, research into CZTSS based thin film solar cells is still incomprehensive and related reports are quite few compared to those for CIGS thin film solar cells, which show high efficiency of over 20%. I will briefly overview the recent technological development of CZTSS thin film solar cells and then introduce our research results mainly related to sputter based process. CZTSS thin film solar cells are prepared by sulfurization of stacked both metallic and sulfide precursors. Sulfurization process was performed in both furnace annealing system and rapid thermal processing system using S powder as well as 5% diluted H2S gas source at various annealing temperatures ranging from $520^{\circ}C$ to $580^{\circ}C$. Structural, optical, microstructural, and electrical properties of absorber layers were characterized using XRD, SEM, TEM, UV-Vis spectroscopy, Hall-measurement, TRPL, etc. The effects of processing parameters, such as composition ratio, sulfurization pressure, and sulfurization temperature on the properties of CZTSS absorber layers will be discussed in detail. CZTSS thin film solar cell fabricated using metallic precursors shows maximum cell efficiency of 6.9% with Jsc of 25.2 mA/cm2, Voc of 469 mV, and fill factor of 59.1% and CZTS thin film solar cell using sulfide precursors shows that of 4.5% with Jsc of 19.8 mA/cm2, Voc of 492 mV, and fill factor of 46.2%. In addition, other research activities in our lab related to the formation of CZTS absorber layers using solution based processes such as electro-deposition, chemical solution deposition, nano-particle formation will be introduced briefly.

  • PDF

Hydrogen Electrode Performance with PTFE Bonded Raney Nickel Catalyst for Alkaline Fuel Cell (라니 니켈 촉매에 대한 알칼리형 연료전지용 수소극의 전극특성)

  • Lee, Hong-Ki;Lee, Ju-Seong
    • Applied Chemistry for Engineering
    • /
    • v.3 no.3
    • /
    • pp.527-534
    • /
    • 1992
  • Raney nickel was used as catalyst in the hydrogen electrode for an alkaline fuel cell. The hydrogen electrode manufactured with the Raney nickel catalyst which was sintered at $700^{\circ}C$ was found to have the highest electrode performance. Using the Raney nickel powder of average particle size $90{\AA}$ for the electrode, the current density which had been measured was $450mA/cm^2$ at $80^{\circ}C$ using 6N KOH solution as an electrolyte. The effects of PTFE addition were investigated with CO-chemisorption, polarization curves and Tafel slope. CO-chemisorption had shown the optimum value when the Raney nickel was mixed with 5wt% of PTFE, but from the current density and Tafel slope at porous Raney nickel electrode, the appropriate value of PTFE addition was 10wt%. Recommendable Ni and Al portion for Raney nickel was 60 : 40 and loading amount was $0.25g/cm^2$. Also the influence of pressing pressure for manufacturing catalytic layer and for junction with gas diffusion layer was examined. The morphology of catalyst surface was investigated with SEM. The influence of reactivation time and heat-treatment temperature were also studied.

  • PDF

Natural Dyeing of Rayon Fabric using Loess (황토를 이용한 인견직물의 천연염색)

  • Jung, Yang-Sook;Bae, Do-Gyu
    • Current Research on Agriculture and Life Sciences
    • /
    • v.31 no.3
    • /
    • pp.193-199
    • /
    • 2013
  • This study dyed rayon fabric using loess as a natural colorant. To obtain the optimal dyeing conditions, various dyeing conditions were examined (temperature, pH, time, and concentration). The color fastness was evaluated using standard washing and rubbing fastness tests. The results were as follows: The loess powder particle size ranged from 0.4 to $1.7{\mu}m$ with a distribution range of 1.1 to $1.4{\mu}m$, representing a fine and uniform manufactured loess powder. The loess component analysis showed a large amount of silicon dioxide and aluminum oxide. TheFT-IR spectra showed that the ammonium group in the rayon fabric produced N-H banding at $1,540cm^{-1}$. The highest K/S value for the rayon fabric was obtained when the pH was 8.0, and this value increased rapidly with a longer dyeing time and when increasing the loess concentration to 30% (w/v). Pre-treatment with a soybean solution produced the highest K/S value for the rayon fabric with a loess concentration of 30% (w/v). The SEM analysis showed a higher amount of loess adhered to the rayon fabric surface when increasing the loess concentration. However, pre-treatment with a cationic agent and soybean solution resulted in a much higher attachment of loess to the fabric surface. Thus, the experimental results showed that using a cationized fabric and pre-treatment with a soybean solution are more effective when dyeing rayon fabric with loess than when using only loess.

  • PDF

Fabrication of Mineral Coating for Slow-releasing Action and Characteristic (완효성을 위한 광물질 피복의 제조와 용출특성연구)

  • Kim, Byoung-Gon;Lee, Gye-Seung;Park, Chong-Lyuck;Jeon, Ho-Seok;Choi, Jong-Myung;Kim, Lee-Yul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.5
    • /
    • pp.377-382
    • /
    • 2007
  • Porous mineral coating have been fabricated and applied for basic research on their slow release action to a fertilizer. Feldspar was selected as raw mineral for the coating and two different particle sizes of powder were prepared. Slow-release action was estimated by using a potassium sulfate fertilizer. Spherical pellets were prepared with a pan-type pelletizer and then screened into sizes ranging 1.4 to 2.35mm. While the fertilizer pellets were rotated in the pelletizer again, the feldspar powder and 0.5% polyvinyl alcohol solution were simultaneously sprayed on the pellets. The fertilizer pellets coated with feldspar powder were fabricated. The pellets were heated to increase their strength and screened to sort by coating thickness. Potassium releasing tests were conducted for 40 days and the performance for slow-release action was estimated as functions of the heating temperature, coating thickness and raw mineral powder size. The Burst effect caused high initial releasing rate. Releasing kinetics was proportional to concentration of potassium in pellets. The pellet that was fabricated with $27.4{\mu}m$-sized feldspar and heated at $1050^{\circ}C$ showed a releasing rate of 43% on the 40th day.