• Title/Summary/Keyword: Particle Temperature

Search Result 2,905, Processing Time 0.036 seconds

Preparation and Characterization of High-performance Photocatalyst for Photoelectrocatalytic System (PECS) (광전자촉매시스템(PECS) 적용을 위한 고효율 광촉매의 제조와 특성)

  • Park, Seong-Ae;Yu, Dong-Sik;Lee, Ji-Ho;Do, Young-Woong;Ha, Jin-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1302-1307
    • /
    • 2006
  • This study describes the preparation of high-performance photocatalyst and its environmental applications. We prepared visible-light response nano-particle photocatalyst exhibiting the similar photocatalytic activity with $TiO_2$, dispersed $TiO_2$ on $SiO_2$ with an active rutile type titanium oxide prepared at low temperature. The binder and stable photocatalytic $TiO_2$ sol for photocatalytic system were also prepared. Such products were evaluated by UV/Vis spectrometer, X-ray diffraction analysis, SEM, measurement of photocatalytic activities and surface area, mechanical properties of $TiO_2$-coated surfaces. The results obtained can be applied in efficient photocatalytic systems using POF and metal plate for the purification of air.

  • PDF

A Study on the Cementation of Cu, Ni and Co Ions with Mn Powders in Chloride Solution (염산용액중에서 망간분말에 의한 구리, 니켈 및 코발트 이온의 세멘테이션에 관한 연구)

  • 안재우;안종관;박경호
    • Resources Recycling
    • /
    • v.9 no.3
    • /
    • pp.3-12
    • /
    • 2000
  • A Study on the cementation for the recovery of Cu, Ni and Co with Mn metallic powders in leaching solution from the manganese nodule that have removed Fe ions was studied. The results showed that the recovery efficiencies of metal ions with Mn powders increased when the temperature, pH and the concentration of chloride ions were increased in mixed solution. And the recovery efficiencies of Cu was 98% and not changed with the addition amounts of Mn powders but, in case of Co and Ni, the recovery efficiencies were increased with the addition amounts. The particle size of precipitate was about $5\mu\textrm{m}$. From the results of experiment we proposed the two-step cementation process for the recovery of Cu, Ni and Co with Mn powders.

  • PDF

A Study on the Dissolution of Aluminum Hydroxide with Mineral and Organic Acid (Aluminum Hydroxide의 유무기산(有無機酸)에 의한 용해특성(溶解特性) 연구(硏究))

  • Lee, Hwa-Young
    • Resources Recycling
    • /
    • v.18 no.2
    • /
    • pp.56-61
    • /
    • 2009
  • The dissolution of domestic aluminum hydroxide of 99.7% purity has been performed with mineral and organic acid prior to the synthesis of aluminum compounds from aluminum solution. Mean particle size of aluminum hydroxide used in the work was $14.4{\mu}m$, $22.9{\mu}m$ and $62.3{\mu}m$, respectively and the effect of reaction temperature, concentration of acid and reaction time on the dissolution of aluminum hydroxide has been examined. As a result, the dissolution of aluminum hydroxide was increased with the concentration of HCl and more than 70% dissolution was obtained with 5 mole/l HCl at $70^{\circ}C$ for reaction time of 4 hr. As far as the dissolution of aluminum hydroxide with sulfuric acid was concerned, it was found that the optimum concentration of sulfuric acid was about 6 mole/l for the effective dissolution of aluminum hydroxide. When oxalic acid was used for the dissolution of aluminum hydroxide, nearly complete dissolution could be obtained by the dissolution for 16 hr with 1.0 mole/l oxalic acid at $90^{\circ}C$.

Electrical and Mechanical Properties of Inkjet-Printed Ag films (잉크젯 인쇄 Ag 배선의 전기적, 기계적 특성에 관한 연구)

  • Kim, In-Young;Song, Young-Ah;Jung, Jea-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.550-550
    • /
    • 2007
  • Inkjet printed silver films were fabricated using nano particles with the size of ~ 20 nm. We can obtain very good conducting silver films with the resistivity of $7.3\;{\mu}{\Omega}{\cdot}cm$ even though they were sintered at the very low temperature of $200^{\circ}C$. The electrical and mechanical properties of inkjet printed silver lines were measured with the sintering time and analyzed with the micro-structural development. The measured resistivity of inkjet printed Ag films were $57.4\;{\sim}\;7.3\;{\mu}{\Omega}{\cdot}cm$. And their hardness and Young's modulus were 0.98 ~ 1.72 GPa and 32 ~ 71 GPa, respectively.

  • PDF

Bonding Strength of Conductive Inner-Electrode Layers in Piezoelectric Multilayer Ceramics

  • Wang, Yiping;Yang, Ying;Zheng, Bingjin;Chen, Jing;Yao, Jinyi;Sheng, Yun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.4
    • /
    • pp.181-184
    • /
    • 2017
  • Multilayer ceramics in which piezoelectric layers of $0.90Pb(Zr_{0.48}Ti_{0.52})O_3-0.05Pb(Mn_{1/3}Sb_{2/3})O_3-0.05Pb(Zn_{1/3}Nb_{2/3})O_3$ (0.90PZT-0.05PMS-0.05PZN) stack alternately with silver electrode layers were prepared by an advanced low-temperature co-fired ceramic (LTCC) method. The electrical properties and bonding strength of the multilayers were associated with the interface morphologies between the piezoelectric and silver-electrode layers. Usually, the inner silver electrodes are fabricated by sintering silver paste in multi-layer stacks. To improve the interface bonding strength, piezoelectric powders of 0.90PZT-0.05PMS-0.05PZN with an average particle size of $23{\mu}m$ were added to silver paste to form a gradient interface. SEM observation indicated clear interfaces in multilayer ceramics without powder addition. With the increase of piezoelectric powder addition in the silver paste, gradient interfaces were successfully obtained. The multilayer ceramics with gradient interfaces present greater bonding strength as well as excellent piezoelectric properties for 30~40 wt% of added powder. On the other hand, over addition greatly increased the resistance of the inner silver electrodes, leading to a piezoelectric behavior like that of bulk ceramics in multilayers.

Electrical Properties of Synthesis LSCF Cathode by Modified Oxalate Method (Modified Oxalate Method로 의해 합성한 LSCF Cathode의 전기적 특성)

  • Lee, Mi-Jai;Kim, Sei-Ki;Jung, Ji-Mi;Park, Sang-Sun;Choi, Byung-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.30-31
    • /
    • 2006
  • The LSCF cathode for Solid Oxide Fuel Cell was investigated to develop high performance unit cell at intermediate temperature by modified oxalate method with different electrolyte. The LSCF precursors using oxalic acid, ethanol and $NH_4OH$ solution were prepared at $80^{\circ}C$, and pH was controlled as 2, 6, 7, 8, 9 and 10. The synthesis precursor powders were calcined at $800^{\circ}C$, $1000^{\circ}C$ and $1200^{\circ}C$ for 4hrs. Unit cells were prepared with the calcined LSCF cathode, buffer layer between cathode and each electrolyte that is the LSGM, YSZ, ScSZ and CeSZ. The synthesis LSCF powders by modified oxalate method were measured by scanning electron microscope and X-ray diffraction. The interfacial polarization resistance of cell was characterized by Solatron 1260 analyzer. The crystal of LSCF powders show single phase at pH 2, 6, 7, 8 and 9, and the average particle size was about $3{\mu}m$. The electric conductivity of synthesis LSCF cathode which was calcined at $1200^{\circ}C$ shows the highest value at pH 7. The cell consist of GDC had the lowest interfacial resistance (about 950 S/cm@650) of the cathode electrode. The polarization resistance of synthesis LSCF cathode by modified oxalate method has the value from 4.02 to 7.46ohm at $650^{\circ}C$. GDC among the electrolytes, shows the lowest polarization resistance.

  • PDF

CdSe Nanocrystal Quantum Dots Based Hybrid Heterojunction Solar Cell

  • Jeong, So-Myung;Eom, S.;Park, H.;Lee, Soo-Hyoung;Han, Chang-Soo;Jeong, So-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.93-93
    • /
    • 2010
  • Semiconductor nanocrystal quantum dots (NQDs) have recently attracted considerable interest for use in photovoltaics. Band gaps of NQDs can be tuned over a considerable range by varying the particle size thereby allowing enhance absorption of solar spectrum. NQDs, synthesized using colloidal routes, are solution processable and promise for a large-area fabrication. Recent advancements in multiple-exciton generation in NQD solutions have afforded possible efficiency improvements. Various architectures have attempted to utilize the NQDs in photovoltaics, such as NQD-sensitized solar cell, NQD-bulk-heterojuction solar cell and etc. Here we have fabricated CdSe NQDs with the band gap of 1.8 eV to 2.1 eV on thin-layers of p-type organic crystallites (1.61 eV) to realize a donor-acceptor type heterojuction solar cell. Simple structure as it was, we could control the interface of electrode-p-layer, and n-p-layer and monitor the following efficiency changes. Specifically, surface molecules adsorbed on the NQDs were critical to enhance the carrier transfer among the n-layer where we could verify by measuring the photo-response from the NQD layers only. Further modifying the annealing temperature after the deposition of NQDs on p-layers allowed higher conversion efficiencies in the device.

  • PDF

Characterization and Photocatalytic effect of ZnO nanoparticles synthesized by spray-pyrolysis method

  • Lee, Sang-Duck;Nam, Sang-Hun;Kim, Myoung-Hwa;Lee, Kang-Suk;Kim, Young-Dok;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.101-101
    • /
    • 2010
  • ZnO shows a direct band gap of 3.37eV, large exciton binding energy (~60 meV), high oxidation ability, high sensitivity to many gases, and low cost, and it has been used in various applications such as transparent electrodes, light emitting diodes (LEDs), gas sensors and photocatalysts. Among these applications ZnO as photocatalyst has considerably attracted attention over the past few years because of its high activities in removing organic contaminants generated from industrial activities. In this research, ZnO nanoparticles were synthesized by spray-pyrolysis method using the zinc acetate dihydrate as starting material at synthesis temperature of $900^{\circ}C$ with concentration varied from 0.01 to 1.0M. The physical and chemical properties of the synthesized ZnO nanoparticles were examined by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Fourier Transformation Infrared (FT-IR), and UV-vis spectroscopy. The Miller indices of XRD patterns indicate that the synthesized ZnO nanoparticles showed a hexagonal wurtzite structure. With increased precursor concentration, a primary, secondary particle sizes of ZnO nanoparticles increased by 0.8 to $1.5{\mu}m$ and 15 to 35nm, and their crystallinity was improved. Methyleneblue (MB) solution ($1{\mu}M$) as a test comtaminant was prepared for evaluating the photocatalytic activities of ZnO nanoparticles synthesized in different precursor concentration. The results show that the photocatalytic efficiency of ZnO nanoparticles was gradually enhanced by increased precursor concentration.

  • PDF

Effect of BaF2 as a Flux in Solid State Synthesis of Y3Al5O12:Ce3+ (고상법을 이용한 Y3Al5O12:Ce3+의 제조에서 BaF2가 미치는 영향)

  • Won, Hyung-Seok;Hayk, Nersisyan;Won, Chang-Whan;Won, Hyung-Il
    • Korean Journal of Materials Research
    • /
    • v.21 no.11
    • /
    • pp.604-610
    • /
    • 2011
  • The effect of $BaF_2$ flux in $Y_3Al_5O_{12}:Ce^{3+}$(YAG:Ce) formation was investigated. Phase transformation of $Y_3Al_5O_{12}$(YAG) was characterized by using XRD, SEM, and TEM-EDS, and it was revealed that the sequential formation of the $Y_4Al_2O_9$(YAM), $YAlO_3$(YAP) and $Y_3Al_5O_{12}$(YAG) in the temperature range of 1000-1500$^{\circ}C$. Single phase of YAG was revealed from 1300$^{\circ}C$. In order to find out the effect of $BaF_2$ flux, three modeling experiments between starting materials (1.5$Al_2O_3$-2.5$Y_2O_3$, $Y_2O_3$-$BaF_2$, and $Al_2O_3$-$BaF_2$) were done. These modeling experiments showed that the nucleation process occurs via the dissolution-precipitation mechanism, whereas the grain growth process is controlled via the liquid-phase diffusion route. YAG:Ce phosphor particles prepared using a proposed technique exhibit a spherical shape, high crystallinity, and an emission intensity. According to the experimental results conducted in this investigation, 5% of $BaF_2$ was the best concentration for physical, chemical and optical properties of $Y_3Al_5O_{12}:Ce^{3+}$(YAG:Ce) that is approximately 10-15% greater than that of commercial phosphor powder.

Electrical and Mechanical Properties of Carbon Particle Reinforced Rubber for Electro-Active Polymer Electrode (전기활성 고분자 전극용 탄소입자 강화고무의 전기적 및 기계적 특성)

  • Lee, Jun Man;Ryu, Sang Ryeoul;Lee, Dong Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1465-1471
    • /
    • 2013
  • The electrical and mechanical properties of room temperature vulcanized (RTV) silicone rubber composites are investigated as functions of multi-walled carbon nanotube (CNT), carbon black (CB), and thinner content. The thinner is used to improve the CNT and CB dispersion in the matrix. The electrical and mechanical properties of the composite with CNT are improved when compared to the composite with CB at the same content. As the thinner content is 80 phr, the electric resistance of the composite decreases significantly with the CNT content and shows contact point saturation of CNT at 2.5 phr. As the thinner content increases, the dispersion of conductive particles improves; however, the critical CB content increases because of the reduction in the CB weight ratio. It is believed that an electrode that needs good flexibility and excellent electrical properties can be manufactured when the amount of CNT and CB are increased with the thinner content.