• Title/Summary/Keyword: Particle Size of cement

Search Result 170, Processing Time 0.024 seconds

Model for simulating the effects of particle size distribution on the hydration process of cement

  • Chen, Changjiu;An, Xuehui
    • Computers and Concrete
    • /
    • v.9 no.3
    • /
    • pp.179-193
    • /
    • 2012
  • The hydration of cement contributes to the performance characteristics of concrete, such as strength and durability. In order to improve the utilization efficiency of cement and its early properties, the particle size distribution (PSD) of cement varies considerably, and the effects of the particle size distribution of cement on the hydration process should be considered. In order to evaluate effects of PSD separately, experiments testing the isothermal heat generated during the hydration of cements with different particle size distributions but the same chemical composition have been carried out. The measurable hydration depth for cement hydration was proposed and deduced based on the experimental results, and a PSD hydration model was developed in this paper for simulating the effects of particle size distribution on the hydration process of cement. First, a reference hydration rate was derived from the isothermal heat generated by the hydration of ordinary Portland cement. Then, the model was extended to take into account the effect of water-to-cement ratio, hereinafter which was referred to as PSD hydration model. Finally, the PSD hydration model was applied to simulate experiments measuring the isothermal heat generated by the hydration of cement with different particle size distributions at different water-to-cement ratios. This showed that the PSD hydration model had simulated the effects of particle size distribution and water-to-cement ratio on the hydration process of cement with satisfactory accuracy.

Effect of Cement Particle Size on Properties of Ordinary Portland Cement (보통 포틀랜드 시멘트 물성에 미치는 시멘트 입도의 영향)

  • Byun, Seung-Ho;Kim, Hyeong-Cheol;Kim, Jae-Young;Choi, Hyun-Kuk;Song, Jong-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.5
    • /
    • pp.394-400
    • /
    • 2010
  • This study examined the effects of particle size on characteristics of cement by controlling the particle size of commercial cement. Through a size adjustment, the cement has increasing more of particles that are less than $10{\mu}m$ in size so the initial reaction time has been shortened as a result of improvement in the early hydration reaction. Additionally, it showed a great characteristics of strength from the early age and the initial hydration heat has been increased as well. In the upper and middle parts cements, the initial hydration reaction rate contribution is high with the $10{\mu}m$ compared to original cement. So the initial hydration reaction rate is improved and as a result, it also showed relatively high hydration heat as well. Additionally, adiabatic temperature also showed an increase rate in the results.

The Relationship between Rheology Properties and Particle size distribution in Cement paste (시멘트 페이스트에서 유동성과 입도분포와의 관계)

  • Hwang, Hae-Jeong;Lee, Seung-Heun;Lee, Won-Jun;Kim, Won-Ki
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.721-724
    • /
    • 2006
  • In this study, particle size distribution of cement powder system were adjusted using the blast furnace slag powder, Blaine $2250cm^2/g\;and\;8300cm^2/g$, which easy to adjust particle size distribution to examine how particle size distribution of the binder has an effect on rheological properties of the cement paste. In addition, the relationship between n-value of Rosin-Rammler function and plastic viscosity were discussed. All measured flow curves represented thixotropy behavior and the hysteresis area was smaller for the more added coarse particle. When the combination was based on a ratio of $20{\sim}25vol%$ fine particles, $30{\sim}40vol%$ OPC and $40{\sim}45vol%$ coarse particles of the total volume, a high fluidity and low yield strength was achieved.

  • PDF

A Study on Preparation of Nano size cement particle by Mechanical method (기계적 방법에 따른 나노 시멘트 입자의 제조에 관한 연구)

  • Jo Byung-Wan;Park Jong-Bin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.216-219
    • /
    • 2004
  • Due to the recent amazing achievements in nano technology. preparation of cement nano particles by mechanical method are examined to improve their properties. The experimental results show that the particle size after 3 hr milling were about 500nm. The SEM photographs of specimens also reveal that average sizes of cement particles are gradually decreased by milling time. And in the TG/DSC, influence of the alcohol is showed strongly. The value of TG of the crushed cement was larger than that of the non-crushed cement. That is also judged to be cause the alcohol.

  • PDF

Ultrasonically enhancing flowability of cement grout for reinforcing rock joint in deep underground

  • Junho Moon;Inkook Yoon;Minjin Kim;Junsu Lee;Younguk Kim
    • Geomechanics and Engineering
    • /
    • v.33 no.2
    • /
    • pp.211-219
    • /
    • 2023
  • This study analyzes the changes in the physical properties of grout by irradiating it with ultrasonic energy and assesses the injectability of the grout into deep rock fractures. The materials used in the research are OPC (Ordinary Portland Cement) and MC (Micro Cement), and are irradiated depending on the water/cement ratio. After irradiating the grout with ultrasonic energy, viscosity, compressive strength, and particle size are analyzed, and the results of the particle size analysis were applied to Nick Barton's theory to evaluate the injectability of the grout into deep rock fractures under those conditions. It was found that the viscosity of the grout decreased after ultrasonic wave irradiation, and the rate of viscosity reduction tended to decrease as the water/cement ratio increased. Additionally, an increase in compressive strength and a decrease in particle size were observed, indicating that the grout irradiated with ultrasonic energy was more effective for injection into rock fractures.

Application of Ferronickel Slag Aggregate to Improve Workability and Strength of Non-Sintered Cement Mortar (비소성 시멘트 모르타르의 작업성 및 강도 개선을 위한 페로니켈슬래그 골재의 적용방안)

  • Jang, Kyung-Soo;Na, Hyeong-Won;Hyung, Won-Gil
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.309-310
    • /
    • 2023
  • Slag and ash generally have a higher powder degree than portland cement, so workability may deteriorate under the same unit quantity condition, and strength and durability decrease when the unit quantity is increased. At this time, if an aggregate having a low water absorption and an appropriate particle size is used to recover the loss of strength, it can contribute to reducing the unit quantity of the binder. Therefore, for the purpose of improving the workability and strength of non-sintered cement mortar using slag and ash, ferro nikel slag whose particle size was adjusted was used as an aggregate and its applicability was identified. In this experimental condition, it was confirmed that non-sintered cement mortar tends to improve workability and secure strength when ferro nikel slag having various particle size distributions is used as an aggregate. This can be analyzed as the effect of ferro nikel slag material properties including glassy properties and mixing conditions with a wide particle size distribution.

  • PDF

Regression Analysis on the Effect of Compressive Grinding of Cement Raw Materials and Clinker Granule

  • Kim, Jong-Cheol;Auh, Keun-Ho
    • The Korean Journal of Ceramics
    • /
    • v.6 no.2
    • /
    • pp.96-99
    • /
    • 2000
  • Particle size of the cement raw materials is important not only in clinker burning but also in cement productivity. Model experiment was designed to investigate the effect of compressive grinding on cement raw materials and clinker granule. Compressive grinding was more efficient in reducing hard materials like quartz. Regression model was constructed to explain the effect of compressive grinding on the size reduction of cement raw materials and clinker.

  • PDF

Influence of TiO2 Particle Size and Structure on its Photocatalytic Effect in Cement Paste (TiO2 입자 크기 및 구조가 시멘트 페이스트 광촉매 효과에 미치는 영향)

  • Liu, Jun-Xing;Suh, Heong-won;Bae, Sung-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.85-86
    • /
    • 2020
  • With the increasing importance of environmental issues, the cementitious materials with self-cleaning or photocatalytic properties by introducing TiO2 materials have been gaining a lot of attention. In this work, the influence of TiO2 particle size and structure on its photocatalytic effect in cement paste was investigated. The degradation of methylene blue solution was used as the parameter for evaluating the photocatalytic effect of micro-TiO2 (m-TiO2), nano-TiO2 (n-TiO2), and TiO2 nanotube (TNT). Moreover, the effect of these three TiO2 materials on the cement hydration products was characterized by X-ray diffraction (XRD) and thermgravimetric analysis (TG). According to the results, it can be found that all of the TiO2 materials promoted the formation of hydration products, especially TNT. On the other hand, the m-TiO2 exhibited a better photocatalytic effect compared to other materials.

  • PDF

Effects of Particle Size of Fly Ash on the High Strength of Hardened Cement Mortar (시멘트 모르터 경화체의 고강도화에 미치는 플라이 애쉬 입자크기의 영향)

  • 김영수;김정환
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.5
    • /
    • pp.131-139
    • /
    • 1994
  • The min aim of thls study was to evaluate the effect of particle slze of the fly ash as a cement additive. Experimental work was carried out with three different sizes of fly ash. 18.58, 8.95 and 4.02{$mu}m$ in average radius. Namely, the effect of particle size variation of fly ash on the physical properties of cement paste was investigated. The jluidity was decreased with increasing the addition of fly ash to cement paste regardless of the particle size variation. The decrement of the fluidity of the pulverized fly ash was higher than that of the spherical fly ash. On the other hand, the pozzolan reactivity increased with lowering particle size. In the case of specimens with 5% up to 10% addition of fly ash having a particle size of 4.02{$mu}m$. the compressive strength was increased as compared with the plain specimens before curing for 28 days and showed higher value above 800kg /$cm^2$ when cured for 60 days.This increased compressive strength was ascribed to both the closer packlng of fine particles and the pozzolan reactivity of fly ash. These results were comfirmed by measuring both the porosity of the specimens and Ca(OH ), contents remained in specimens. This work showed that could be effectively ut~lized as a blending material without any de crease in the strength of early hydration stage if we can control the particle size of fly ashes by sizing or pulverizing.