• Title/Summary/Keyword: Particle Shape

Search Result 1,166, Processing Time 0.033 seconds

Analysis of Wear Debris for Machine Condition Diagnosis of the Lubricated Moving Surface (기계윤활 운동면의 작동상태 진단을 위한 마멸분 해석)

  • Seo, Yeong-Baek;Park, Heung-Sik;Jeon, Tae-Ok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.5
    • /
    • pp.835-841
    • /
    • 1997
  • Microscopic examination of the morphology of wear debris is an accepted method for machine condition and fault diagnosis. However wear particle analysis has not been widely accepted in industry because it is dependent on expert interpretation of particle morphology and subjective assessment criteria. This paper was undertaken to analyze the morphology of wear debris for machine condition diagnosis of the lubricated moving surfaces by image processing and analysis. The lubricating wear test was performed under different sliding conditions using a wear test device made in our laboratory and wear testing specimen of the pin-on-disk-type was rubbed in paraffine series base oil. In order to describe characteristics of debris of various shape and size, four shape parameters (50% volumetric diameter, aspect, roundness and reflectivity) have been developed and outlined in the paper. A system using such techniques promises to obviate the need for subjective, human interpretation of particle morphology in machine condition monitoring, thus to overcome many of the difficulties in current methods and to facilitate wider use of wear particle analysis in machine condition monitoring.

An Evaluation of Three Dimensional Finite Element Model on the Strength Prediction of Particles Reinforced MMCs (입자강화형 금속복합재료의 강도 예측에 관한 3차원 유한요소 모델의 평가)

  • 강충길;오진건
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.6
    • /
    • pp.124-138
    • /
    • 1998
  • Particles reinforced MMCs have many advantages over monolithic metals including a higher specific modulus, higher specific strength, better properties at elevated temperatures and better wear resistance. SiC$_p$/A16061 composites have good results in its mechanical properties. This work investigates SiC$_p$/A16061 composites in the microscopic view and compares the analytical results with the experimental ones. The discrepancy of the material properties between the reinforced particle, SiC$_p$, and the matrix material, A16061 appears to be so significant. Especially the coefficient of thermal expansion(CTE) of A16061 is 5 times larger than that of SiC$_p$. Thermal residual stress in MMCs is induced at high temperatures. The shape of particle is various but the theoretical model is not able to consider the nonuniform shape. Particle distribution is not homogeneous in experimental specimen. However, it is assumed to be homogeneous in simulation model. The shapes of particles are assumed to be not only perfect global but hexahedral shapes. The types of particle distribution are two - simple cubic array(SC array) and face-centered cubic array(FCC array).

  • PDF

Influence of Carbon Black Contents and Rubber Compositions on Formation of Wear Debris of Rubber Vulcanizates

  • Choi, Sung-Seen;Yang, Seong Ryong;Chae, Eunji;Son, Chae Eun
    • Elastomers and Composites
    • /
    • v.55 no.2
    • /
    • pp.108-113
    • /
    • 2020
  • Wear particles of the model tread compounds for bus and truck tires were made using a laboratory abrasion tester and characterized based on their size distributions, shapes, and crosslink densities. The influence of the carbon black contents and rubber compositions (NR= 100 and NR/BR= 80/20) on the production of wear particles was investigated. The wear particles were separated according to size using a sieve shaker. The shape properties of the wear particles were analyzed using an image analyzer and scanning electron microscopy (SEM). Their shapes were observed as tiny stick cookies or sausages with bumpy surfaces. The particle size distribution tended to be smaller with increasing carbon black content. Moreover, the particle size distributions of the NR = 100 samples were larger than that of the NR/BR blend samples. There were different filaments in the wear particles. The filament diameters tended to be thinner with increasing carbon black content. The crosslink density increased with increasing carbon black content, and the crosslink densities of the NR= 100 samples were lower than those of the NR/BR blend ones. The particle size distribution tended to be smaller with increasing crosslink density. Based on the experimental results, the wear particles can be produced by detaching debris from the main body through repetitive strain and recovery.

Synthesis of Platinum Nanoparticles by Liquid Phase Reduction (액상환원공정을 이용한 백금 나노 입자의 합성)

  • Lee, Jin-Ho;Kim, Se-Hoon;Kim, Jin-Woo;Lee, Min-Ha;Kim, Young-Do
    • Journal of Powder Materials
    • /
    • v.19 no.1
    • /
    • pp.60-66
    • /
    • 2012
  • In this study, Platinum(Pt) nanoparticles were synthesized by using polyol process which is one of the liquid phase reduction methods. Dihydrogen hexachloroplatinate (IV) hexahydrate $(H_2PtCl_6{\cdot}6H_2O)$, as a precursor, was dissolved in ethylene glycol and silver nitrate ($AgNO_3$) was added as metal salt for shape control of Pt particle. Also, polyvinylpyrrolidone (PVP), as capping agent, was added to reduce the size of particle and to separate the particles. The size of Pt nanoparticles was evaluated particle size analyzer (PSA). The size and morphology of Pt nanoparticles were observed by transmission electron microscopy (TEM) and high resolution TEM (HRTEM). Synthesized Pt nanoparticles were studied with varying time and temperature of polyol process. Pt nanoparticles have been successfully synthesized with controlled sizes in the range 5-10 and 20-40 nm with cube and multiple-cube shapes.

Electromagnetic Wave Absorption Properties According to by Controling Ferrite Particle Size in Electromagnetic Wave Absorber of Sheet Type (Sheet형 전파흡수체에 있어 페라이트 입자 크기의 제어에 따른 전파흡수특성)

  • 김동일;김수정;옥승민;송재만
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.319-323
    • /
    • 2002
  • Electromagnetic wave absorbers with the shape of sheet have been fabricated and their absorption properties are measured. The fabricated ferrite absorbers have different particle sizes and the absorbtion property is increased with decreasing the size of particle in a certain frequency range of 2.4∼3.2 ㎓.

  • PDF

Performace of a Cyclone and an impactor Using Monodisperse and Polydisperse Particles (단분산 입자와 다분산 입자를 이용한 싸이클론 및 임팩터의 성능평가)

  • Im Gyeong-Su;Lee Gyu-Won
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2001.11a
    • /
    • pp.101-102
    • /
    • 2001
  • Monodisperse aerosols containing spherical particles of known size, shape and density are the most widely used to calibrate particle-size measuring instruments and to determine the effects of particle size on the sampling device. However, these tests are time-consuming because monodisperse aerosols with different particle sizes are generated and tested in a series of experiments. Polydisperse aerosols may be used to determine the calibration or to simulate equipment under controlled laboratory condition. (omitted)

  • PDF

Studies on the relationship of the preparation and the particle size of the precipitated calcium carbonate (침강탄산칼슘제조건과 그 입자도에 관한 연구)

  • 나운룡
    • YAKHAK HOEJI
    • /
    • v.12 no.3_4
    • /
    • pp.41-49
    • /
    • 1968
  • The optimum reaction conditions for the preparation of the precipitated calcium carbonate of an average particle size of 0.05.mu. in diameter was set in which the Box-Wilson Plan was applied. The reaction conditions are as follows; 1) concentration of milk of lime; 6.56% w/w 2) temperature; 14.24.deg. C #) velocity of carbon dioxide introducing; 1.95l/min. The crystal form was found that of calcite in X-ray diffraction analysis. The particle size was determined by the sedimentation volume measurement. The shape was identified by the elctron micro-diffraction pattern and the electron microscopic photographs.

  • PDF

Densification Kinetics of Steel Powders during Direct Laser Sintering

  • Simchi, Abdolreza;Petzoldt, Frank
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.250-251
    • /
    • 2006
  • It is known that powder characteristics including particle size and distribution, particle shape, and chemical composition are important parameters which influence direct laser sintering of metal powders. In this paper, we introduce a first order kinetics model for densification of steel powders during laser sintering. A densification coefficient (K) is defined which express the potential of different powders to be laser-sintered to a high density dependent on their particle characteristics.

  • PDF

Development of real-time nanoscale contaminant particle characteristics diagnosis system in vacuum condition (진공공간 내 나노급 오염입자의 실시간 진단시스템 개발)

  • Kang, Sang-Woo;Kim, Taesung
    • Vacuum Magazine
    • /
    • v.2 no.3
    • /
    • pp.11-15
    • /
    • 2015
  • Particle characteristics diagnosis system (PCDS) was developed to measure submicron particle characteristics by modulation of particle beam mass spectrometry (PBMS) with scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS). It is possible to measure the particle size distribution in real-time, and the shape, composition can be measured in sequence keeping vacuum condition. Apparatus was calibrated by measuring the size classified NaCl particle which generated at atmospheric pressure. After the calibration, particles were sampled from the exhaust line of plasma enhanced chemical vapor deposition (PECVD) process and measured. Result confirms that PCDS is capable for analyzing particles in vacuum condition.

Surface Discharge in Various Electrode Geometries

  • Joh, Dai-Geun;Kim, Hyun-Sook;Gill, Do-Hyun;Kim, Young-Goun;Choi, Eun-Ha;Cho, Guang-Sup
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.111-112
    • /
    • 2000
  • The breakdown characteristics of surface discharge investigated experimentally agree well with the analytic results of previous reports [1-3] in various electrode geometries. Additionally, we find that the electrode geometry effects on the firing voltage can be understood with the ionization probability relating to the number of priming particles. We have also observed the shape of surface discharge and the surface striations in the gap geometry with the pressure, the applied voltage, and the driving frequency.

  • PDF