• Title/Summary/Keyword: Particle Seeding

Search Result 49, Processing Time 0.03 seconds

Recovery of High Concentrated Phosphates using Powdered Converter Slag in Completely Mixed Phosphorus Crystallization Reactor (완전혼합형 정석탈인반응조에서 미분말 전로슬래그를 이용한 고농도 인의 회수)

  • Kim, Eung-Ho;Yim, Soo-Bin;Jung, Ho-Chan;Lee, Eok-Jae;Cho, Jin-Kyu
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.1
    • /
    • pp.59-65
    • /
    • 2005
  • A phosphate recovery system from artificial wastewater was developed using a completely mixed phosphorus crystallization reactor, in which powdered converter slag was used as a seeding crystal. In preliminary test, the optimal pH range for meta-stable hydroxyapatite crystallization for high phosphorus concentration was observed to be 6.0 to 7.0, which was different from the conventionally known pH range (8.0~9.5) for effective crystallization in relatively low phosphorus concentration less than 5 mg/L. The average phosphorus removal efficiency in a lab-scaled completely mixed crystallization system for artificial wastewater with about 100 mg/L of average $PO_4-P$ concentration was shown to be 60.9% for 40 days of lapsed time. XRD analysis exhibited that crystalline of hydroxyapatite formed on the surface of seed crystal, which was also observed in SEM analysis. In EDS mapping analysis, composition mole ratio (=Ca/P) of the crystalline was found to be 1.78, indicating the crystalline on the surface of seed crystal is likely to be hydroxyapatite. Particle size distribution analysis showed that average size of seed crystal increased from $28{\mu}m$ up to $50{\mu}m$, suggesting that phosphorus recycling from wastewater with high phosphorus concentration can be successfully obtained by using the phosphorus crystallization recovery system.

Effect of Crystal Particle Deposition on Morphology of Zeolite Membrane and its Separation Performance (결정입자 도포가 제올라이트 막 구조 및 분리성능에 미치는 영향)

  • Lee, Yong-Taek;Jeong, Heon-Kyu;Jeong, Dong-Jae;Yun, Mi-Hye;Ahn, Hyo-Seong
    • Membrane Journal
    • /
    • v.18 no.3
    • /
    • pp.198-205
    • /
    • 2008
  • A novel technology for homogeneous deposition of zeolite particles on a porous support was developed so that those particles played a seeding role for the growth of zeolite crystals. After the particles were dispersed in water, the aqueous solution was 134 through the bore of a porous tubular support. By keeping the other side of the support in a vacuum, the aqueous solution passed through the pores of the support, leading the particles to be homogeneously deposited on the support. The amount of the deposited particles was investigated by changing the following operating parameters: a particle concentration in the solution, a time for deposition, and the feeding rate of the solution. The amount of the deposited particles increased from 0.0019 g to 0.0208 g as the concentration of the particles was changed from 0.01 wt% to 0.3 wt%, while the feeding rate and the deposition time were kept to 100 mL/min and 4 min, respectively. As the deposition time was varied from 1 min to 4 min, the deposition amount increased from 0.0004g to 0.0019g at the typical condition of the rest parameters. Also, it was observed that the deposited weight increased from 0.0029 g to 0.01 g as the feeding rate increased from 100 mL/min to 300 mL/min. However, the total permeance of water and ethanol decreased through the zeolite membrane as the deposited weight increased.

Effect of hydrogenation surface modification on dispersion and nucleation density of nanodiamond seed particle (수소화 표면 개질이 나노다이아몬드 seed 입자의 분산 및 핵형성 밀도에 미치는 영향)

  • Choi, Byoung Su;Jeon, Hee Sung;Um, Ji Hun;Hwang, Sungu;Kim, Jin Kon;Cho, Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.6
    • /
    • pp.239-244
    • /
    • 2019
  • Two hydrogenation surface modifications, namely hydrogen atmosphere heat treatment and hydrogen plasma treatment, were found to lead to improved dispersion of nanodiamond (ND) seed particles and enhanced nucleation density for deposition of smooth ultrananocrystalline diamond (UNCD) film. After hydrogenation, the C-O and O-H surface functionalities on the surface of nanodiamond particles were converted to the C-H surface functionalities, and the Zeta potential was increased. As the degree of dispersion was improved, the size of nanodiamond aggregates decreased significantly and nucleation density increased dramatically. After hydrogen heat treatment at 600℃, average size of ND particles was greatly reduced from 3.5 ㎛ to 34.5 nm and a very high nucleation of ~3.9 × 1011 nuclei/㎠ was obtained for the seeded Si surface.

Growth of Nanocrystalline Diamond on W and Ti Films (W 및 Ti 박막 위에서 나노결정질 다이아몬드의 성장 거동)

  • Park, Dong-Bae;Myung, Jae-Woo;Na, Bong-Kwon;Kang, Chan Hyoung
    • Journal of Surface Science and Engineering
    • /
    • v.46 no.4
    • /
    • pp.145-152
    • /
    • 2013
  • The growth behavior of nanocrystalline diamond (NCD) film has been studied for three different substrates, i.e. bare Si wafer, 1 ${\mu}m$ thick W and Ti films deposited on Si wafer by DC sputter. The surface roughness values of the substrates measured by AFM were Si < W < Ti. After ultrasonic seeding treatment using nanometer sized diamond powder, surface roughness remained as Si < W < Ti. The contact angles of the substrates were Si ($56^{\circ}$) > W ($31^{\circ}$) > Ti ($0^{\circ}$). During deposition in the microwave plasma CVD system, NCD particles were formed and evolved to film. For the first 0.5h, the values of NCD particle density were measured as Si < W < Ti. Since the energy barrier for heterogeneous nucleation is proportional to the contact angle of the substrate, the initial nucleus or particle densities are believed to be Si < W < Ti. Meanwhile, the NCD growth rate up to 2 h was W > Si > Ti. In the case of W substrate, NCD particles were coalesced and evolved to the film in the short time of 0.5 h, which could be attributed to the fact that the diffusion of carbon species on W substrate was fast. The slower diffusion of carbon on Si substrate is believed to be the reason for slower film growth than on W substrate. The surface of Ti substrate was observed as a vertically aligned needle shape. The NCD particle formed on the top of a Ti needle should be coalesced with the particle on the nearby needle by carbon diffusion. In this case, the diffusion length is longer than that of Si or W substrate which shows a relatively flat surface. This results in a slow growth rate of NCD on Ti substrate. As deposition time is prolonged, NCD particles grow with carbon species attached from the plasma and coalesce with nearby particles, leaving many voids in NCD/Ti interface. The low adhesion of NCD films on Ti substrate is related to the void structure of NCD/Ti interface.

Identification of Factors Affecting Errors of Velocity Calculation on Application of MLSPIV and Analysys of its Errors through Labortory Experiment (MLSPIV를 이용한 유속산정시 오차요인 규명 및 실내실험을 통한 유속산정오차 분석)

  • Kim, Young-Sung;Lee, Hyun-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.2
    • /
    • pp.153-165
    • /
    • 2010
  • Large-Scale Particle Image Velocimetry (LSPIV) is an extension of particle image velocimetry (PIV) for measurement of flows spanning large areas in laboratory or field conditions. LSPIV is composed of six elements - seeding, illumination, recording, image transformation, image processing, postprocessing - based on PIV. Possible error elements at each step of Mobile LSPIV (MLSPIV), which is a mobile version of LSPIV, in field applications are identified and summarized the effect of the errors which were quantified in the previous studies. The total number of elemental errors is 27, and five error sources were evaluated previously, seven elemental errors are not effective to the current MLSPIV system. Among 15 elemental errors, four errors - sampling time, image resolution, tracer, and wind - are investigated through an experiment at a laboratory to figure out how those errors affect to velocity calculation. The analysis to figure out the effect of the number of images used for image processing on the velocity calculation error shows that if over 50 images or more are used, the error due to it goes below 1 %. The effect of the image resolution on velocity calculation was investigated through various image resolution using digital camera. Low resolution image set made 3 % of velocity calculation error comparing with high resolution image set as a reference. For the effect of tracers and wind, the wind effect on tracer is decreasing remarkably with increasing the flume bulk velocity. To minimize the velocity evaluation error due to wind, tracers with high specific gravity is favorable.

Heterogeneous nucleations in the polyol process for the preparation of fine cobalt particles (미립 코발트분말 합성을 위한 polyol공정에서 비균질계 핵생성 반응)

  • 김동진;정헌생;우상덕;이재장;안종관
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.2
    • /
    • pp.73-79
    • /
    • 2002
  • The polyol process which applies to cobalt, nickel. copper and precious metals is a interesting and unexpected example of such a method for preparing uniform metal powders. The reaction proceeds via dissolution, and the polyol acts simultaneously as a solvent, a reducing agent, and to some extent a protective agent. Submicrometer uniform cobalt particles can be obtained by seeding the reactive medium ($AgNO_3$) to achieve a complete substitution of homogeneous by heterogeneous nucleation. By varying the number of nuclei it is possible to control to some extent the average particle size in the submicrometer (0.5$\mu$m) range.

Crystal Growing of NaX type Zeolite

  • Ha, Jong-Pil;Seo, Dong-Nam;Kim, Seong-Yong;Jung, Mi-Jeong;Moon, In-Ho;Cho, Sang-Joon;Park, Hyun-Min;Kim, Ik-Jin
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1999.06a
    • /
    • pp.351-360
    • /
    • 1999
  • A large NaX type zeolite crystal of a uniform particle size of 20${\mu}{\textrm}{m}$ are grown with various H2O content by hydrothermal reaction and added seed crystal (2~3 ${\mu}{\textrm}{m}$) to reactant solution as a function of different adding seed levels from 3 to 15 %. The result that increased purity of NaX zeolite above 95% and homogeneity of crystal size by increasing adding seed levels, also decreased crystallization time. It was explained that adding seed to synthesis solution leaded out increase of surface area of physical contact reaction and directed growth of seed crystal, so more rapid consumption of reaction gel as increase seeding levels.

  • PDF

Development of X-ray PIV Technique and Its Applications (X-ray PIV 기법의 개발과 적용연구)

  • Lee Sang Joon;Kim Guk Bae;Kim Seok;Kim Yang-Min
    • Journal of the Korean Society of Visualization
    • /
    • v.3 no.1
    • /
    • pp.20-25
    • /
    • 2005
  • An x-ray PIV (Particle Image Velocimetry) technique was developed fur measuring quantitative information on flows inside opaque conduits and/or opaque-fluid flows. To check the performance of the x-ray PIV technique developed, it was applied to a liquid flow in an opaque Teflon tube. To acquire x-ray images suitable for PIV velocity field measurements, the refraction-based edge enhancement mechanism was employed with seeding detectable tracer particles. The amassed velocity field data obtained were in a reasonable agreement with the theoretical prediction. The x-ray PIV technique was also applied to get velocity fields of blood flow and to measure size and velocity of micro-bubbles simultaneously, and to visualize the water refilling process in bamboo leaves. The x-ray PIV was found to be a powerful transmission-type flow imaging technique fur measuring quantitative information of flows inside opaque objects and various opaque-fluid flows.

  • PDF

The Effect of Intake Port Configurations on the Turbulence Characteristics During Compression Stroke in a Motored Engine (흡입포트형상에 따른 모터링엔진내 압축과정 난류특성 연구)

  • 강건용;이진욱;정석용;백제현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.920-932
    • /
    • 1994
  • The combustion phenomena of a reciprocating engine is one of the most important processes affecting performance and emissions. One effective way to improve the engine combustion is to control the motion of the charge inside a cylinder by means of optimum induction system design, because the flame speed is mainly determined by the turbulence at compression(TDC) process in S.I. engine. It is believed that the tumble and swirl motion generated during intake breaks down into small-scale turbulence in the compression stroke of the cycle. However, the exact nature of their relationship is not well known. This paper describes cycle resolved LDV measurement of turbulent flow inside the cylinder of a 4-valve engine under motoring(non-firing) conditions, and studies the effect of intake port configurations on the turbulence characteristics using following parameters ; Eulerian temporal autocorrelation coefficient, turbulence energy spectral density function, Taylor micro time scale, integral time scale, and integral length scale.

Crystal growing of NaX type zeolite

  • Ha, Jong-Pil;Seo, Dong-Nam;Jung, Mi-Jeong;Moon, In-Ho;Cho, Sang-Joon;Park, Hyun-Min;Kim, Ik-Jin
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.4
    • /
    • pp.371-376
    • /
    • 1999
  • A large NaX type zeolite crystal of a uniform particle size of 20$\mu\textrm{m}$ are grown with various {{{{{H}_{2}O}}}} content by hydrothermal reaction and added seed crystal (2~3$\mu\textrm{m}$) to reactant solution as a function of different adding seed levels from 3 to 15%. The result that increased purity of NaX zeolite above 95% and homogeneity of crystal size by increasing adding seed levels, also decreased crystallization time. It was explained that adding seed to synthesis solution leaded out increase of surface area for physical contact reaction and directed growth of seed crystal, so more rapid consumption of reaction gel as increase seeding levels.

  • PDF