• Title/Summary/Keyword: Particle Removal

Search Result 749, Processing Time 0.026 seconds

Change of Calcium Carbonate Crystal Size at steady state in CMSMPR(Continuous Mixed Suspension Mixed Produce Removal) Crystallizer (연속식결정화기 정상상태에서 탄산칼슘 결정크기 변화)

  • Han, Hyun Kak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.714-719
    • /
    • 2017
  • The controlled synthesis of inorganic materials with a specific size and morphology is an important factor in the development of new materials in many fields, such as nanoparticles, medicine, electronics, semiconductors, pharmaceutical sand cosmetics. Solution crystallization is one of the most widely used separation processes in the chemical and pharmaceutical industries. Calcium carbonate has attracted a great deal of attention in industry because of its numerous applications. The mean crystal size, crystal size distribution and morphology are important factors in the continuous crystallization process. In this study, the continuous crystallization of calcium carbonate by the calcium chloride process was investigated. The mean crystal size and crystal size distribution data were obtained by a particle size analyzer. The morphological imaging of the crystalswasper formed by SEM. Under steady state operation, the mean crystal size change was small, but increasing the input concentration and mixing rate increased the crystal size. In this operation, some aragonite was found, but the main crystal phase was calcite.

Sea water Treatment using an Automatic Backwashing Filter (자동역세척 여과장치를 이용한 해수처리)

  • Park Sang-Ho;Lim Jae-Dong;Kim In-Soo
    • Journal of Navigation and Port Research
    • /
    • v.30 no.3 s.109
    • /
    • pp.241-245
    • /
    • 2006
  • Displayed result that handle particle contaminant and hydrospace organism included a number of ballast that is happened in ship using automatic back washing filter. Reason that removes first contaminant that is included in number of ballast is that heighten processing effectof after processing processof the filter. Another advantage is to drop off the solids with controlling revolution of drum screen in pretreatment filtration process. The fact that it is easy to attach and detach a several type of screen for getting the expected water quality is another advantage. Filter rotation speed of filtration filter could be expose by 35mmHg more than 60 rpm and filter consecutively filtration pressure is 40.5mmHg in 20 rpm and 40 rpm are 36.6mmHg. Filtration system removal aquatic organism over $70{\mu}min$ ballast water. This study shows that the filtration treatment system has a potential for the treatment of ballast water.

The Improvement of Water Quality by Using Filter-aids in Rapid Sand Filters (급속모래여과 공정에서의 여과보조제에 의한 수질개선효과 연구)

  • 김형선;이규성;백영매;조춘구
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.4
    • /
    • pp.15-24
    • /
    • 2001
  • The objective of this study it to evaluate the microbial safety in rapid sand filters adapted in most drinking water treatment plants. The potential pathogens to cause water quality problems Are presumed to be Giardia and Gryptosporidium. They look like particles in view of their size. It has been reported that if the number of particles (larger than 2 ${\mu}{\textrm}{m}$ in water) is less than 100 per mL and its turbidity is below 0.1 NTU, it is considered as a safe water in terms of pathogens. In order to achieve such a good water quality. filter-aids (chemicals) were added to the inlet-channel of filter and their effectiveness was evaluated on the basis of water quality factors such as turbidity and particle counting. This study was conducted in she three steps of experiment: jar test. pilot plant test and real water treatment plant test (P plant in seoul). The experiment reult of the P water treatment showed that cationic polyamine was the most effective in the removal of particles and turbidity at the does of 0.25 mg/L. The turbidity without filer-aids showed in the range of 0.12 ~0.17 NTU during filtration and 0.14 NTU on the average. However. with addition of polyamine, the turbidity represented below(or less than) 0.1 NTU after 20 min in the start of filtration and kept 0.08 NTU on the average. On the other hand, as for number of particles, while no filter-aids led to the range of 111 ~270 per mL and 190 on the average, addition of polydmine led to 113 per mL on talc average, and kept below100 per mL after 20 min in the start of filtration.

  • PDF

System Analysis of Dust Concentration at the Field of Tunnel Excavation (터널 굴착시 작업현장의 분진농도 실태조사)

  • Park, Jong-Soon;An, Dae-Hyun;Shim, Myeong-Jin;Jung, Ji-Seung;You, Jin-O;Um, Myeong-Heon;Kim, Jae-Yong
    • Applied Chemistry for Engineering
    • /
    • v.18 no.2
    • /
    • pp.126-129
    • /
    • 2007
  • In order to ruduce traffic-jam, it is requested to extend road. As a result, the construction of tunnels is inevitable considering our mountatinous topography. In tunnel construction work, major contamination materials occur from rock drilling, blasting rock, rock transporting, and short-creat. After rock blasting, a very high concentration of particles over $5000{\mu}g/m^3$ is maintained for 4 h when air is supplied by pans, by which the construction work has to be delayed at least 30 min. Although dry dust collectors are used, the effective operation time span is limited to 3 h. In this work, the behavior of particles in air and use of particle removal instruments are investigated. As a result, it was important to compare efficiencies of dry and hydro dust collectors.

Enhanced 2-Chorophenol Photodecomposition using Nano-Sized Mn-incorporated TiO2 Powders Prepared by a Solvothermal Method

  • Kim, Dongjin;Im, Younghwan;Jeong, Kyung Mi;Park, Sun-Min;Um, Myeong-Heon;Kang, Misook
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2295-2298
    • /
    • 2014
  • To effectively destruct 2-chlorophenol, a representative sterile preservative, nanometer-sized Mn (0.5, 1.0, 3.0 mol %)-incorporated $TiO_2$ powders were synthesized by a solvothermal method. XRD result demonstrated that the Mn ingredients were perfectly inserted into $TiO_2$ framework. The Mn-$TiO_2$ particles exhibited an anatase structure with a particle size of below 20 nm. The absorbance was shifted to the higher wavelength on Mn-$TiO_2$ compared to that of $TiO_2$. Otherwise, the PL intensities which has a close relationship for recombination between holes and electrons significantly decreased on Mn-$TiO_2$. The photodecomposition for 2-chlorophenol in a liquid system was enhanced over Mn-doped $TiO_2$ compared with pure $TiO_2$: 2-chlorophenol of 50 ppm was completely decomposed after 12 h when 1.0 mol % Mn-$TiO_2$ was used. Consequently, the core of this paper is as follows. introducing Mn into $TiO_2$ framework reduced the band-gap, moreover, it played as an electron capture resulted to lower recombination between electrons and holes during photocatalytic reaction for removal of 2-cholophenol.

Design of 3D Oculus VR Action Game using Silhouette Outline

  • Kim, Ho-Ryel;Han, Chang-Min;An, Syoungog;Kim, Soo Kyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.11
    • /
    • pp.59-65
    • /
    • 2020
  • Lately the VR (Virtual Reality) game genre is becoming increasingly more popular and it has been cementing its place in the market as its own independent game genre. The key advantage of VR is that it lowers the barrier between player and the virtual world, thus creating an immersive experience. The suggested method develops a game that allows the player to experience what it is like to be visually impaired using the unique characteristics of VR. A distinctive feature of this game is that the character is provided only a limited range of sight, which is created using silhouette outlines. This restrictive visual field is then grafted onto VR and the player can indirectly experience blindness in a highly immersive manner. The silhouette outline along with the particle system is created using Oculus Rift, a headset highly used in VR game development, and Unity 3D game engine. We will also explain in detail regarding the removal of borders between the objects.

Performance of Nano Ceramic Filter for the Removal of Ultra Fine Particles (초미세입자 제거를 위한 나노세라믹 필터의 성능 평가)

  • Kim, Jong-Won;Ahn, Young-Chull;Yi, Byeong-Kwon;Jeong, Hyeon-Jae
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.751-756
    • /
    • 2009
  • In the perspective of saving energy in buildings, the high performance of insulation and air tightness for improving the heating and the cooling efficiency, has brought economically positive effects. However, these building energy saving technologies cause the lack of ventilation, which is the direct cause of increasing the indoor contaminants, and is also very harmful to the residents, because they spend over 90% of their time indoors. Therefore, the ventilation is important to keep the indoor environment clean and it can also save the energy consumption. In this study, a HEPA type nano ceramic filter is designed as a passive ventilation system to collect airborne particles and to supply fresh outdoor air. The double layer filter, which has $30{\mu}m$ in diameter at the conditions of 10wt% of concentration and 3kV/cm of the electric intensity, is produced by electrospinning. The filtration coating technology is confirmed in the solution with $SiO_2$ nano particles using polymer nano fibers. Also double layer filters are coated with $SiO_2$ nano particles and finally the porous construction materials are made by sintering in the electric furnace at $200{\sim}1400^{\circ}C$. The efficiency is measured 96.67% at the particle size of $0.31{\mu}m$, which is slightly lower than HEPA filter. However the efficiency is turned out to be sufficient.

  • PDF

Inhibition of Growth and Microcystin Toxicity, and Characterization of Algicidal Substances from Lactobacillus graminis against Microcystis aeruginosa (Microcystis aeruginosa에 대한 Lactobacillus graminis의 성장 억제능, microcystin 분해 및 살조 물질의 특성)

  • Joo, Jae-Hyoung;Park, Bum Soo;Lee, Eun-Seon;Kang, Yoon-Ho;Han, Myung-Soo
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.3
    • /
    • pp.176-186
    • /
    • 2016
  • For several decades, lactic acid bacterium (Lactobacillus graminis: LAB) has been generally recognized as safe. To develop the pan-environmental bio-control agent, algicidal activity of the live LAB cell and its culture filtrate (CF) was examined against Microcystis aeruginosa. LAB cells perfectly lysed M. aeruginosa within 3 days, while the CF had a less effect than the live cells, approximately 78% inhibition of algal growth during a same culture period. The concentration of microcystin in alone culture of M. aeruginosa was $7.1{\mu}gL^{-1}$, but gradually increased and leach $158.5{\mu}gL^{-1}$ on 10 days. However, LAB cells clearly decreased the microcystin by $10.3{\mu}gL^{-1}$ in the same period, approximately 93.5%. CF of LAB showed a strong algicidal activity over 75% between pH 2-7, 91.3% by the treatment of proteinase K, 87.8% by below 3 kDa in particle size, and 75.3% by heat treatment, respectively. Of five solvents, fractions of CF passed through solvents diethyl ether and ethyl acetate showed an obvious algicidal activity in the algal-lawn test. Among 5 fractions purified by silica-gel TLC plate, two spots showed a most strong removal activity on M. aeruginosa. Another analysis of GC indicate that CF contained six representative fatty acids. Even though most of these substance have been known as an anti-algal substance against M. aeruginosa, oleic acid is the most effective. These results suggested that the culture filtrate or specific substances, like a fatty acids, in comparison with live L. graminis can be a successful and eco-friendly agent to control Microcystis bloom.

Recovery of High Concentrated Phosphates using Powdered Converter Slag in Completely Mixed Phosphorus Crystallization Reactor (완전혼합형 정석탈인반응조에서 미분말 전로슬래그를 이용한 고농도 인의 회수)

  • Kim, Eung-Ho;Yim, Soo-Bin;Jung, Ho-Chan;Lee, Eok-Jae;Cho, Jin-Kyu
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.1
    • /
    • pp.59-65
    • /
    • 2005
  • A phosphate recovery system from artificial wastewater was developed using a completely mixed phosphorus crystallization reactor, in which powdered converter slag was used as a seeding crystal. In preliminary test, the optimal pH range for meta-stable hydroxyapatite crystallization for high phosphorus concentration was observed to be 6.0 to 7.0, which was different from the conventionally known pH range (8.0~9.5) for effective crystallization in relatively low phosphorus concentration less than 5 mg/L. The average phosphorus removal efficiency in a lab-scaled completely mixed crystallization system for artificial wastewater with about 100 mg/L of average $PO_4-P$ concentration was shown to be 60.9% for 40 days of lapsed time. XRD analysis exhibited that crystalline of hydroxyapatite formed on the surface of seed crystal, which was also observed in SEM analysis. In EDS mapping analysis, composition mole ratio (=Ca/P) of the crystalline was found to be 1.78, indicating the crystalline on the surface of seed crystal is likely to be hydroxyapatite. Particle size distribution analysis showed that average size of seed crystal increased from $28{\mu}m$ up to $50{\mu}m$, suggesting that phosphorus recycling from wastewater with high phosphorus concentration can be successfully obtained by using the phosphorus crystallization recovery system.

Covalent organic polymer grafted on granular activated carbon surface to immobilize Prussian blue for Cs+ removal (유기고분자로 표면 개질 된 입상활성탄을 이용한 프러시안 블루 고정화 및 Cs+ 제거)

  • Seo, Younggyo;Oh, Daemin;Hwang, Yuhoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.5
    • /
    • pp.399-409
    • /
    • 2018
  • Prussian blue is known as a superior material for selective adsorption of radioactive cesium ions; however, the separation of Prussian blue from aqueous suspension, due to particle size of around several tens of nanometers, is a hurdle that must be overcome. Therefore, this study aims to develop granule type adsorbent material containing Prussian blue in order to selectively adsorb and remove radioactive cesium in water. The surface of granular activated carbon was grafted using a covalent organic polymer (COP-19) in order to enhance Prussian blue immobilization. To maximize the degree of immobilization and minimize subsequent detachment of Prussian blue, several immobilization pathways were evaluated. As a result, the highest cesium adsorption performance was achieved when Prussian blue was synthesized in-situ without solid-liquid separation step during synthesis. The sample obtained under optimal conditions was further analyzed by scanning electron microscope-energy dispersive spectrometry, and it was confirmed that Prussian blue, which is about 9.7% of the total weight, was fixed on the surface of the activated carbon; this level of fixing represented a two-fold improvement compared to before COP-19 modification. In addition, an elution test was carried out to evaluate the stability of Prussian blue. Leaching of Prussian blue and cesium decreased by 1/2 and 1/3, respectively, compared to those levels before modification, showing increased stability due to COP-19 grafting. The Prussian blue based adsorbent material developed in this study is expected to be useful as a decontamination material to mitigate the release of radioactive materials.