• Title/Summary/Keyword: Particle Length

Search Result 527, Processing Time 0.025 seconds

Force Analysis on the Nano/Micro Particle in a Flow using Immersed Boundary-Lattice Boltzmann Method (가상경계-격자 볼츠만 방법을 이용한 유동장내 나노/마이크로 입자에 작용하는 힘의 해석)

  • Jo, Hong Ju;Lee, Sei Young
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.35-44
    • /
    • 2022
  • Immersed boundary-Lattice Boltzmann Method (IB-LBM) is used for the analysis of flow over the circular cylinder in the concept of fluid-structure interaction analysis (FSI). Recently, IB-LBM has shown the enormous possibility for the application of various biomedical engineering fields, such as the movement of a human body or the behavior of the blood cells and/or particle-based drug delivery system in blood vessels. In order for the numerical analysis of the interaction between fluid and solid object, immersed boundary method and lattice Boltzmann method are coupled to analyze the flow over a cylinder for low Reynolds laminar flow (Re=10, 20, 40 and 100) with Zhu-He boundary condition at the boundary. With the developed IB-LBM, the flow around the cylinder in the uniform flow is analyzed for the laminar flow and the drag and lift coefficients and recirculation length are compared to the previous results.

Evaluation of Particle Removal Rate in Inclined-pipe Settling System for Stormwater Infiltration (강우유출수의 침투시 부하저감을 위한 경사관 침전장치의 효율평가)

  • Kim, Sangrae;Kim, Dongkeun;Mun, Jungsoo;Han, Mooyoung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.6
    • /
    • pp.719-726
    • /
    • 2009
  • One of the alternative runoff management measures is on-site runoff mitigation, such as rainwater retention tank and infiltration facilities especially the latter that is possible to manage simultaneously runoff quality and quantity as a perspective of water-cycle. This study was conducted to develop a particle separator, inclined-pipe settling system, that could improve particle removal efficiency of road runoff as a pre-treatment device of stormwater infiltration. Solid particles larger than $100{\mu}m$ are separated by simple sedimentation; however, the significant amount of pollutants with a diameter less than $100{\mu}m$ remain in suspension. Without any treatment in that case of the runoff into infiltrate, groundwater would be deteriorated and also infiltration rate would be decreased by clogging. Therefore, we suggest optimal design parameters (inclined angle, pipe length, and surface loading rate) of inclined-pipe settling system which can be designed to effectively remove particles diameter smaller then $70{\mu}m$. Thus, the results showed TSS removal efficiency more than 80% with a particle diameter between $20{\mu}m$ and $70{\mu}m$, 100% above particle diameter $70{\mu}m$ for the inflow rate $0.018 m^3/m^2{\cdot}hr$ with pipe inclined at angle $15^{\circ}$.

Particle Shape Evaluation of Aggregate using Digital Image Process (디지털 이미지 처리 기법을 이용한 골재입자의 형상 분류)

  • Hwang, Taik-Jean;Cho, Jae-Yoon;Lee, Kwan-Ho;Song, Young-Sun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.4
    • /
    • pp.53-59
    • /
    • 2009
  • The purpose of this research is particle shape evaluation of granular soil and aggregate using Digital Image Process(DIP). DIP is very useful to measure the roughness and particle shape of aggregates. Couple of aggregates, like standard sand, two different crushed stones, and two different marine aggregates, have been employed. Shape factor of two different marine aggregates is ranged 0.35 to 0.54. Crushed stone I is that of 0.74 which is highly flat, but standard sand is elongated shape. Especially, two marine aggregate showed a big difference of width and length which meaned a long shape. There is any significant difference of elongation ratio and flakiness for each aggregate with different measuring system, like direct measurement of vernier calipers and DIP method. Within the limited test results, DIP is one of useful to get the particle shape of aggregate with limitation of measuring errors and to apply the particle distribution curve.

Effect of Particle Size Distribution on the Sensitivity of Combustion Instability for Solid Rocket Motors (입자 크기 분포도를 고려한 고체로켓 모터의 연소 불안정 민감도 예측)

  • Joo, Seongmin;Kim, Junseong;Moon, Heejang;Ohm, Wonsuk;Lee, Dohyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.5
    • /
    • pp.37-45
    • /
    • 2015
  • Prediction of combustion instability within a solid-propellant rocket motor has been conducted with the classical acoustic analysis. The effect of particle size distribution on the instability has been analyzed by comparing the log-normal distribution to the fixed mono-sized particle followed by a survey of motor length scale effect between the baseline model and small scale model. Particle damping effect was more efficient for the small scale motor which has a relatively high unstable mode frequencies. It was also revealed that the prediction results by considering the particle size distribution show an overall attenuation of fluctuating pressure amplitude with respect to the mono-sized case.

Turfgrass Establishment of USGA Putting Greens Related with Soil Physical Properties (USGA 공법으로 조성된 그린의 토앙물리성과 Bentgrass의 생육)

  • Kweon Dong-Young;Lee Jeong-Ho;Lee Dong-lk;Joo Young-Kyoo
    • Asian Journal of Turfgrass Science
    • /
    • v.19 no.2
    • /
    • pp.95-102
    • /
    • 2005
  • USGA green specification is currently accepted in construction method of Korea. This study was carried out to find the factors influencing growth of turfgrass associated with soil physical properties of soil root-zone on golf green constructed with USGA method. Three putting greens in poor turfgrass and one in good turfgrass condition were selected for investigation on one golf course site at mid-South Korean peninsula. Soil hardness, moisture content, root length, and turf density were measured on-site greens, and soil physical properties and soil chemical properties also analyzed in laboratory. As a result of on-site surveys and soil physical tests in laboratory, soil physical properties were most important factors which influenced on turfgrass growth at tested greens. The results of soil particle analysis on green No. 2, in good turf condition, matched USGA sand particle recommendations. But those greens such as Nos. 1, 11 and 16, in poor putting greens, showed high soil compaction and improper soil particle distribution. Those factors created low leaf density, poor root depth, and higher moisture content compared with lower part of topsoil. Such phenomena caused inadequate turfgrass growth with soil hardening associated with poor drainage. Therefore, declines of soil physical properties associated with improper particle distribution caused a major factor influencing on turfgrass growth in golf green. Adequate test of soil particle analysis by USGA specification and proper construction method followed by adequate turf maintenance should be performed to obtain optimal turf quality on putting green.

Size-controlled Chevrel Mo6S8 as Cathode Material for Mg Rechargeable Battery

  • Ryu, Anna;Park, Min-Sik;Cho, Woosuk;Kim, Jeom-Soo;Kim, Young-Jun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.3033-3038
    • /
    • 2013
  • Nanoscale Chevrel $Mo_6S_8$ powders are synthesized by molten salt synthesis. Synthesized $Mo_6S_8$ powders have different mean particle sizes which are dependent on a ratio of salt to precursor. The particle sizes of $Mo_6S_8$ powders changes along with the ratio increase. $Mo_6S_8$ (6:1) demonstrates the best electrochemical characteristics among the synthesized $Mo_6S_8$ powders although the $Mo_6S_8$ (4:1) has the smallest particle size. $Mo_6S_8$ (6:1) shows a reversible capacity of 83.9 $mAhg^{-1}$, which is 27.5% and 33% improved value over $Mo_6S_8$ (2:1) and $Mo_6S_8$ (4:1) at a current density of 0.2C, respectively. The superior electrochemical properties of $Mo_6S_8$ (6:1) are attributed to the balanced particle size which provides proper contact area with electrolyte and the shortened $Mg^{2+}$ diffusion length. The $Mo_6S_8$ (4:1) has the smallest particle size but further reduction of particle size from $Mo_6S_8$ (6:1) is not advantageous.

Comparison of Nano Particle Size Distributions by Different Measurement Techniques

  • Bae, Min-Suk;Oh, Joon-Seok
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.2
    • /
    • pp.219-233
    • /
    • 2010
  • Understanding the Nano size particles is of great interest due to their chemical and physical behaviors such as compositions, size distributions, and number concentrations. Therefore, accurate measurements of size distributions and number concentrations in ultrafine particles are getting required because expected losses such as diffusion for the instrument system from ambient inlet to detector are a significant challenge. In this study, the data using the computed settling losses, impaction losses, diffusion losses for the sampling lines (explored different sampling line diameters, horizontal length, number of bending, line angles, flow rates with and without a bypass), and diffusion losses for the Scanning Mobility Particle Sizers are examined. As expected, the settling losses and impaction losses are very minor under 100 nm, however, diffusion loss corrections for the sampling lines and the size instrument make a large difference for any measurement conditions with high numbers of particles smaller mobility size. Both with and without the loss corrections, which can affect to size distributions and number concentrations are described. First, 80% or more of the smallest particles (less than 10 nm) can be lost in the condition of a flow rate of 0.3 liter per minute and the length of sampling line of 1.0 m, second, total number concentrations of measurements are quite significantly affected, and the mode structure of the size distribution changes dramatically after the loss corrections applied. With compared to the different measurements, statistically diffusion loss corrections yield a required process of the ambient particle concentrations. Based on the current study, as an implication, a possibility of establishing direct revelation mechanisms is suggested.

Analysis of Particles Motion in Vertical Rayleigh Flow (수직 Rayleigh 유동내의 입자 거동 해석)

  • Ko, Seok-Bo;Jun, Yong-Du;Lee, Kum-Bae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.6
    • /
    • pp.447-456
    • /
    • 2007
  • Suspended particles behavior when they go through a vertical riser with heat transfer is of significant concern to system designers and operators in pneumatic transport, various processes such as in chemical, pharmaceutical and food industries. When it comes with the energy system, that knowledge is critical to the reliable design practices of related equipment as heat exchangers, especially in the phase of system scale-up. Without haying a good understanding of the related physics, many scale-up practices based on their pilot plant experience suffer from unexpected behaviors and problems of unstable fluidization typically associated with excessive pressure drop, pressure fluctuation and even unsuccessful particle circulation. In the present study, we try to explain the observed phenomena with related physics, which may help understanding of our unanswered experiences and to provide the designers with more reliable resources for their work. We selected hot exhaust gas with solid particle that goes through a heat exchanger riser as our model to be considered. The effect of temperature change on the gas velocity, thermodynamic properties, and eventually on the particles motion behavior is reviewed along with some heat transfer analyses. The present study presents an optimal riser length at full scale under given conditions, and also defines the theoretical limiting length of the riser. The field data from the numerical analysis was validated against our experimental results.

Experimental Study on Micro PIV Measurement using a Micro Liquid Lens (마이크로 유체렌즈를 이용한 마이크로 PIV 측정에 관한 실험적 연구)

  • Jeong, S.R.;Dang, T.D.;Choi, J.H.;Kim, G.M.;Park, C.W.
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.3
    • /
    • pp.22-28
    • /
    • 2010
  • In the present study, we performed the velocity field measurement in a microchannel using a focal length variable micro liquid lens. The liquid lens is used as a beam expander in a micro-PIV system to acquire the scatter image of the seeded particle. A thin film-type micro liquid lens was made of PDMS material and it was attached on top of the 700-micron-wide working fluid supply channel trench. As a result, the focal length and contact angle of the liquid lens changed with variations in applied pressure.

The Characteristic Self-assembly of Gold Nanoparticles over Indium Tin Oxide (ITO) Substrate

  • Li, Wan-Chao;Lee, Sang-Wha
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1133-1137
    • /
    • 2011
  • Ordered array of gold nanoparticles (Au NPs) over ITO glass was investigated in terms of ITO pretreatment, particle size, and diamines with different chain length. Owing to the indium-tin-oxide (ITO) layer coated on the glass, the substrate surface has a limited number of hydroxyl groups which can produce functionalized amine groups for Au binding, which resulted in the loosely-packed array of Au NPs on the ITO surface. Diamine ligand as a molecular linker was introduced to enhance the lateral binding of adjacent Au NPs immobilized on the amine-functionalized ITO glass, consequently leading to the densely-packed array of Au NPs over the ITO substrate. The molecular bridging effect was strengthened with the increase of chain length of diamines: C-12 > C-8. The packing density of small Au NPs (< 40 nm) was significantly increased with the increase of C-8 diamine, but large Au NPs (> 60 nm) did not produce densely-packed array on the ITO glass even for the dosage of C-12 diamine.