• Title/Summary/Keyword: Particle Imaging Velocimetry(PIV)

Search Result 31, Processing Time 0.135 seconds

Analysis on the Uncertainty Accompanied by PlV Velocity Measurements (PIV속도계측에 수반하는 UNCERTAINTY해석)

  • 이영호;최민선
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.71-74
    • /
    • 1991
  • Uncertainty analyses accompanied by the measurement of the velocity vectors in 3-D cavity flows are carried out. Twenty-one elemental errors are esimated or calculated according to the ANIS/ASME uncertainty analysis manual. Error components associater with the PIV(Particle Imaging Velocimetry) are reasonably small and the errors caused by the flow characteristics are fairly large, which confirm the reliability of the PIV measurement and also give good information to the planning phase of the experiment by discriminating the most critical parameter. The present study reveals that vector length expressed by pixels is the most influential. Calculated relative uncertainty for the all experimental conditions is ranging about 5-10% in terms of the representative velocity 0.5U. U is here the belt velocity on the cavity apparatus. Approximating equations to show the relative rss uncertainties are given and graphic representations are followed for the easier understanding of the uncertainty, existing in the velocity profiles of the cavity flow.

  • PDF

PIV Measurement on Ice Slurry Pipe Flow (PIV에 의한 원관내 Ice Slurry의 유동계측)

  • Hwang Tae Gyu;Hong Seong Dae;Park Seong Ryong;Baek Tae Sil;Doh Deog Hee
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.98-101
    • /
    • 2004
  • Experimental studies were reported on the characteristics of flows in a circular pipe in which ice slurry is flowing. This was mainly due to deficiency of conventional measurement techniques. In this report, the flow characteristics are quantitatively investigated by the use of PIV technique concerning the Ice Packing Factor(IPF) and the power changes of pump motor. It was experimentally verified that the power loss does not increase any more at a certain IPF value.

  • PDF

Experimental research on blood sucking phenomena of a female mosquito (암모기 흡혈과정에 대한 실험적 연구)

  • Kim, Bo-Heum;Lee, Jung-Yeop;Lee, Sang-Joon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1475-1478
    • /
    • 2008
  • We have investigated the blood sucking phenomena of a female mosquito. The main objective of this study is to understand the mosquito's blood sucking mechanism and eventually to develop a bio-mimic technology that can be used to resolve the problem encountered in the transport of infinitesimal biological fluids in various bio-chips and microchips. At first, the consecutive velocity fields of blood-sucking flow in a proboscis were measured using a micro-particle image velocimetry (PIV) system employed with a high-speed camera. The velocity signals of the blood-sucking flow in the proboscis represent a periodic pulsatile flow pattern and spectral analysis on the velocity waveform shows a clear peak at 6.1 Hz.

  • PDF

Experimental research on blood sucking phenomena of a female mosquito (암모기 흡혈과정에 대한 실험적 연구)

  • Kim, Bo-Heum;Lee, Jung-Yeop;Lee, Sang-Joon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.105-106
    • /
    • 2008
  • As a carrier of malaria and sneak of blood, mosquitoes are an unpleasant insect. However, there are several unknown natural secretes related with mosquitoes. Among them, we focused on the blood sucking process of a female mosquito. The main objective of this study is to understand the mosquito's blood sucking mechanism that can be used to resolve the problem encountered in the injection or transport of infinitesimal biological fluids in a micro-chip. At first, the velocity fields of blood-sucking flow in a proboscis were measured using a micro-particle image velocimetry (PIV) technique. The velocity signals of flow in the proboscis show periodic variation. This seems to be resulted from the beating of the pharyngeal pump which works as driving power. To analyze the pumping mechanism, the temporal variation of the pharyngeal pump was visualized using the synchrotron X-ray micro-imaging technique. The volume variation was estimated by the help of digital image processing techniques. Once the main mechanism of blood sucking process was found, a effective micro-pumping system with high efficiency would be developed in near future.

  • PDF

Flow Analyses in the Bifurcated Duct with PIV System and Computer Simulation (입자영상유속계와 컴퓨터 시뮬레이션을 이용한 분기관내 유동해석)

  • Sub, Sang-Ho;Choi, Yul;Roh, Hyung-Woon;Doh, Deog-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.1
    • /
    • pp.123-130
    • /
    • 1999
  • The objective of the current study is to understand steady 3-dimensional flow phenomena in a bifurcated duct experimentally. A bifurcation model is fabricated with transparent acrylic resin to visualize the whole flow field with the PIV system. The gray level cross-correlation method is applied to the image processing algorithm. The subpixel and the area interpolation methods are used to obtain the final velocity vectors. The finite volume predictions are used to analyze the flow patterns in the bifurcation model. The results of the computer simulation and the PIV experiment for three-dimensional flow show the recirculation zone and the formation of the paired secondary flow distal to the apex of the bifurcation model. The results obtained with the two methods also show that the branch flow strongly strikes the inner wall due to the inertial effect and accompanied helical motion as it flows toward the outer wall.

Visualization of Vortex-induced Mixing at the Liquid-liquid-gas 3-phase Contact Line (액체-액체-기체 3상 접촉선에서의 와류에 의한 혼합 가시화)

  • Kim, Tae-Hong;Kim, Hyoungsoo;Kim, Seungho;Kim, Ho-Young
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.3
    • /
    • pp.21-24
    • /
    • 2012
  • Although the motion of the three-phase contact line on a solid substrate has been extensively studied thus far, the understanding of the dynamics of the contact line of liquid/liquid/gas phases is far from complete. Here we deposit a drop of isopropyl alcohol (IPA) on water and HFE-7100 whose free surfaces are exposed to air to observe the flow field around the contact line. By combining the shadowgraph and high-speed imaging techniques, we find that vortices are spontaneously generated at the contact line, which grow in size with time. The flow is attributed to the Marangoni stress that pulls a liquid of lower-surface tension toward a liquid surface having a higher surface tension. However, it is not still clear why the entrained lower-surface-tension liquid should whirl rapidly beneath the contact line. We also visualize the flow by the particle image velocimetry (PIV) to find out that the rotational velocity reaches the order of 1 mm/s near the free surface.

Designation of fuel oil scrubber nozzle positioning using CFD analysis and PIV methods (CFD 해석 및 PIV 실험을 통한 연료유 스크러버의 노즐 위치선정)

  • Kim, In-Cheol;Kim, Chang-Goo;Park, Sung-Jin;Cho, Dong-Yeon;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.7
    • /
    • pp.773-778
    • /
    • 2015
  • Global warming has recently become an issue that has resulted in a growing trend to minimize environmental pollution. The International Maritime Organization (IMO) has shown that the majority of marine atmospheric pollution occurs as a result of emissions from marine vessels. Therefore, the environmental regulations and emission standards regarding marine vessels have gradually become stricter, and the research and development in this area is experiencing significant progress. In this study, a nozzle for a fuel oil scrubber was investigated using computational fluid dynamics (CFD) and particle imaging velocimetry (PIV). Experiments were conducted on scaled-down model of the scrubber to determine its performance, which was then compared with CFD results. Based on the experimental results, it was found that at a spray angle of $66^{\circ}$, the spray velocity at the nozzle was 20.1 m/s. From this comparison, a full-scale scrubber model was analyzed using CFD, and the effect of the positioning of the nozzle was studied.

Evaluation of the Impact Force on the Single Spray and Overlap Region of Twin Spray in Full Cone Type Swirl Nozzle (Full Cone Type 스월노즐에서 단일분무와 이중분무의 중첩영역에 대한 충격력 평가)

  • Kim, T.H.;Sung,, Y.M.;Jeong, H.C.;Kim, D.J.;Choi, G.M.
    • Journal of ILASS-Korea
    • /
    • v.16 no.1
    • /
    • pp.27-36
    • /
    • 2011
  • The impact force on the single and overlap region of twin spray was experimentally evaluated using visualization method in full cone type swirl nozzle spray. Visualization of spray was conducted to obtain the spray angle and breakup process. The photography/imaging technique, based on Particle Image Velocimetry (PIV) using high-speed camera, was adopted for the direct observation of droplet motion and axial velocity measurement, respectively. Droplet size was measured by Particle Motion Analyze System (PMAS). The purpose of this study is to provide fundamental information of spray characteristics, such as impact force, for higher etching factor in the practical wet etching system. It was found that the spray angle, axial velocity and impact force were increased with increasing the nozzle pressure while droplet size decreased with increasing the nozzle pressure. Droplet size increased as the distance from nozzle tip was decreased. The impact force of twin spray in the overlap region was about 63.29, 67.02, 52.41% higher than that of single spray at 40, 50 and 60 mm of nozzle pitch, respectively. Also, the nozzle pitch was one of the important factors in the twin spray characteristics.

Development of Simulation Model for Diffusion of Oil Spill in the Ocean (III) - Oil-droplet spreading measurement using 3-dimensional digital image processing technique- (해양유출기름의 확산 시뮬레이션 모델개발 (III) -3차원 디지털화상처리를 이용한 유적의 퍼짐 계측 -)

  • 이중우;도덕희;김기철;강신영
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.6 no.1
    • /
    • pp.47-55
    • /
    • 2000
  • A three-dimensional digital image processing technique is proposed to quantitatively predict the dispersion phenomena of oil droplet onto the surface of the water. This technique is able to get the dispersion rate of an oil droplet three-dimensionally just below the surface of the water over time. The obtained dispersion rate obtained through this technique is informative to the investigation into the relationship among the gravity, surface tensions between oil, water, and air. This technique is based upon the three-dimensional PIV(Particle Imaging Velocimetry) technique and its system mainly consists of a three CCD(Charge Coupled Device) cameras, an image grabber, and a host computer in which an image processing algorithm is adopted for the acquisition of dispersion rate oil an oil droplet.

  • PDF

Flow Visualization in the Branching Duct by Using Particle Imaging Velocimetry (입자영상유속계를 이용한 분기관내 유동가시화)

  • No, Hyeong-Un;Seo, Sang-Ho;Yu, Sang-Sin
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.29-36
    • /
    • 1999
  • The objective of this study is to analyse the flow field in the branching duct by visualizing the flow phenomena using the PIV system. A bifurcation model is fabricated with transparent acrylic resin to visualize the whole flow field with the PIV system. Water was used as the working fluid and the conifer powder as the tracer particles. The single-frame and two-frame methods of the PIV system and 2-frame of the grey level correlation method are applied to obtain the velocity vectors from the images captured in the flow filed. The velocity distributions in a lid-driven cavity flow are compared with the so-called standard experimental data, which was obtained from by 4-frame method in order to validate experimental results of the PIV measurements. The flow patterns of a Newtonian fluid in a branching duct were successfully visualized by using the PIV system and the sub-pixel and the area interpolation method were used to obtain the final velocity vectors. The velocity vectors obtained from the PIV system are in good agreement with the numerical results of the 3-dimensional branch flow. The results of numerical analyses and the PIV experiments for the three-dimensional flows in the branch ing duct show the recirculation zone distal to the branching point and the sizes of the recirculation length and height of the tow different methods are in good agreement.

  • PDF