• 제목/요약/키워드: Particle Imaging Velocimetry(PIV)

검색결과 31건 처리시간 0.023초

3차원 PIV를 활용한 초음파 진동에 의해 발생된 음향 유동을 이용한 스마트 냉각법 연구 (Study on Smart Cooling Technology by Acoustic Streaming Generated by Ultrasonic Vibration Using 3D PIV)

  • 이동렬;노병국;권기정
    • 한국소음진동공학회논문집
    • /
    • 제20권11호
    • /
    • pp.1078-1088
    • /
    • 2010
  • In order to analyze the quantitative characteristics of acoustic streaming, experimental setup of 3-D stereoscopic PIV(particle imaging velocimetry) was designed and quantitative ultrasonic flow fields in the gap between the ultrasonic vibrator and heat source were measured. Utilizing acoustic streaming induced by ultrasonic vibration, surface temperature drop of cooling object was also measured. The study on smart cooling method by acoustic streaming induced by ultrasonic vibration was performed due to the empirical relations of flow pattern, average flow velocity, different gaps, and enhancement on cooling rates in the gap. Average velocity fields and maximum acoustic streaming velocity in the open gap between the stationary cylindrical heat source and ultrasonic vibrator were experimentally measured at no vibration, resonance, and non-resonance. It was clearly observed that the enhancement of cooling rates existed owing to the acoustic air flow in the gap at resonance and non-resonance induced by ultrasonic vibration. The ultrasonic wave propagating into air in the gap creates steady-state secondary eddy called acoustic streaming which enhances heat transfer from the heat source to encompassing air. The intensity of the acoustic streaming induced by ultrasonic vibration experimentally depended upon the gap between the heat source and ultrasonic vibrator. The ultrasonic vibration at resonance caused the increase of the acoustic streaming velocity and convective heat transfer augmentation when the flow fields by 3D stereoscopic PIV and temperature drop of the heat source were measured experimentally. The acoustic streaming velocity of air enhancement on cooling rates in the gap is maximal when the gap agrees with the multiples of half wavelength of the ultrasonic wave, which is specifically 12 mm.

입자영상유속계를 이용한 혈관내피세포 모형 주위의 유동가시화 (Flow Visualization around the Endothelial Cell Model by the PIV System)

  • 노형운;서상호;유상신
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.381-384
    • /
    • 2000
  • Relationships between biochemical phenomena and hemodynamics on human endothelial cells are very important to study the mechanism of atherosclerotic formation and development. The objective of this study is to investigate the flow phenomena around the endothelial cell model by the PIV experiment. The microscopic images of endothelial cells were acquired by a CCD camera to fabricate the shape of endothelial cell. The cell models were fabricated by using a photoforming process. Two consecutive particle images were captured by the CCD camera for the image processing. Conifer powder as the tracing particles was added to water to visualize the flow field. The cross-correlation method was applied fer the image processing of the flow visualization. Pressure and wall shear stress variations on the surfaces of the endothelial cells were calculated to investigate the effects of hemodynamic forces on the morphological changes.

  • PDF

PIV와 수치해석을 이용한 분지관내 맥동유동의 가시화 (Flow Visualization of Pulsatile Flow in a Branching Tube using the PIV System and Numerical Analysis)

  • 노형운;서상호;유상신
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.535-540
    • /
    • 2000
  • The objective of the present study is to visualize the pulsatile flow fields by using three-dimensional computer simulation and the PIV system. A closed flow loop system was built for the steady and unsteady experiments. The Harvard pulsatile pump was used to generate the pulsatile pressure and velocity waveforms. Conifer powder as the tracing particles was added to water to visualize the flow field. Two consecutive particle images were captured by a CCD camera for the image processing. The cross-correlation method in combination with the moving searching area algorithm was applied for the image processing of the flow visualization. The pulsatile flow fields were visualized effectively by the PIV system in conjunction with the applied algorithm. The range validation and the area interpolation methods were used to obtain the final velocity vectors with high accuracy. The finite volume predictions were used to analyze three-dimensional flow patterns in the bifurcation model. The results of the PIV experiment and the computer simulation are in good agreement and the results show the recirculation zones and formation of the paired secondary flow distal to the apex of the bifurcated model. The results also show that the branch flow is pushed strongly to the inner wall due to the inertial force effect and helical motions are generated as the flow proceeds toward the outer wall.

  • PDF

에코 PIV를 이용한 맥동 유동에서의 in vitro 전단률 측정 연구 (Non-Invasive Measurement of Shear Rates of Pulsating Pipe Flow Using Echo PIV)

  • 김형범;정인영
    • 대한기계학회논문집B
    • /
    • 제28권12호
    • /
    • pp.1567-1572
    • /
    • 2004
  • Although accurate measurement of velocity profiles, multiple velocity vectors, and shear stress in arteries is important, there is still no easy method to obtain such information in vivo. This study shows the utility of combining ultrasound contrast imaging with particle image velocimetry (PIV) for non-invasive measurement of velocity vectors. The steady flow analytical solution and optical PIV measurements (for pulsatile flow) were used for comparison. When compared to the analytical solution, both echo PIV and optical PIV resolved the steady velocity profile well. Error in shear rate as measured by echo PIV (8%) was comparable to the error of optical PIV (6.5%). In pulsatile flow, echo PIV velocity profiles agreed well with optical PIV profiles. Echo PIV followed the general profile of pulsatile shear stress across the artery but underestimated wall shear at certain time points. These studies indicate that echo PIV is a promising technique for the non-invasive measurement of velocity profiles and shear stress.

PIV/POD 기법을 이용한 냉장고 냉기류 성능평가 (Performance Tests of the Frozen Air Flows in a Refrigerator using PIV/POD Technique)

  • 김경천;김석로;김종욱
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2007년도 추계학술대회
    • /
    • pp.97-100
    • /
    • 2007
  • A new evaluation method for the performance tests of the frozen air in a refrigerator using PIV(Particle Imaging Velocimetry) and POD(Proper Orthogonal Decomposition) techniques is introduced. A two-door refrigerator model was tested for the experiments. Actual temperature measurements were carried out for the drawer No.4 in refrigerator. By evaluating the characteristics of the interior flow of the refrigerator, an optimal shape of the drawer could be suggested through the PIV evaluation test. In this research, in order to find influences the turbulent kinetic energy contribution associated with the dynamic structures, we executed a POD analysis using the method of snapshots and the instantaneous fluctuating velocity field.

  • PDF

PIV를 이용한 분지관모델내 3차원 맥동유동의 가시화 (Three-Dimensional Flow Visualization of Pulsatile Flow in a Branching Model using the PIV System)

  • 성순경;조민태;노형운;서상호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.748-753
    • /
    • 2001
  • The objective of the present study is to visualize the pulsatile flow fields by using three-dimensional computer simulation and the PIV system. A closed flow loop system was built for the steady and unsteady experiments. The Harvard pulsatile pump was used to generate the pulsatile pressure and velocity waveforms. Conifer powder as the tracing particles was added to water to visualize the flow field. Two consecutive particle images were captured by a CCO camera for the image processing at several cross section. The range validation and the area interpolation methods were used to obtain the final velocity vectors with high accuracy. The finite volume predictions were used to analyze three-dimensional flow patterns in the bifurcation model. The results of the PIV experiment and the computer simulation are in good agreement and the results show the recirculation zones and formation of the paired secondary flow distal to the apex of the bifurcated model. The results also show that the branch flow is pushed strongly to the inner wall due to the inertial force effect and helical motions are generated as the flow proceeds toward the outer wall.

  • PDF

입자영상유속계를 이용한 가두리 망지의 난류강도 계측 (Measurement of turbulence intensity of cage net using the particle imaging velocimetry)

  • 배재현;안희춘
    • 수산해양기술연구
    • /
    • 제50권4호
    • /
    • pp.595-603
    • /
    • 2014
  • This study is aimed to analyze the hydrodynamic characteristics of the cage net in the circulating water channel. It visualized wake flows using a PIV (paricle imaging velocimetry) and analyzed the flow velocity distribution. In addition, the vorticity and turbulence intensity were analyzed from the wake flow distribution and compared changes by flow velocity. Results showed that the average turbulence intensity in the circulating water channel was very stable showing less than 1% in the range between 0.2 and 0.8 m/s. The drag coefficient affecting to the netting was estimated to be 1.35. The flow decreasing rate of the wake in the middle of the netting was 2.1% at the range of 0.2 m/s and it was constant at 6.6-6.9% over the range of 0.4 m/s irrespective of velocity increases. Finally, the change of turbulence intensity by netting and knot mesh could be confirmed. These results can be utilized as a basic information for the future research of flow characteristics by fishing nets and meshes.

X-ray PIV 기법의 개발과 혈액 유동에의 적용연구 (Development of X-ray PIV Technique and its Application to Blood Flow)

  • 김국배;이상준
    • 대한기계학회논문집B
    • /
    • 제29권11호
    • /
    • pp.1182-1188
    • /
    • 2005
  • An x-ray PIV (Particle Image Velocimetry) technique was developed to measure quantitative information on flows inside opaque conduits and on opaque-fluid flows. At first, the developed x-ray PIV technique was applied to flow in an opaque Teflon tube. To acquire x-ray images suitable for PIV velocity field measurements, refraction-based edge enhancement mechanism was employed using detectable tracer particles. The optimal distance between with the sample and detector was experimentally determined. The resulting amassed velocity field data were in reasonable agreement with the theoretical prediction. The x-ray PIV technique was also applied to blood flow in a microchannel. The flow pattern of blood was visualifed by enhancing the diffraction/interference -bas ed characteristic s of blood cells on synchrotron x-rays without any contrast agent or tracer particles. That is, the flow-pattern image of blood was achieved by optimizing the sample (blood) to detector distance and the sample thickness. Quantitative velocity field information was obtained by applying PIV algorithm to the enhanced x-ray flow images. The measured velocity field data show a typical flow structure of flow in a macro-scale channel.

입자영상유속계를 이용한 은어 (Plecoglossus altivelis)의 유영능력 측정 (Measurement of swimming ability of silver fish (Plecoglossus altivelis) using a Particle Imaging Velocimetry)

  • 배재현;이경훈;신종근;양용수;이주희
    • 수산해양기술연구
    • /
    • 제47권4호
    • /
    • pp.411-418
    • /
    • 2011
  • As a fish way is a structure for fish migrating well toward upper stream due to breaking river flow by a dam or dammed pool, the specific fish's swimming ability is one of the main factors in making a plan and managing it. In addition, it also needs to understand the current field in fish road to evaluate its performance. This study is aimed to analyze the swimming patterns with current velocity changes using a Particle Imaging Velocimetry (PIV) in order to understand the swimming ability of silver fish (Plecoglossus altivelis) that is one of the fishes migrating through the fish way of Nakdong River, and to analyze the 2 dimensional current field near to silver fish at swimming momentum. The results showed that average values of tail beat frequencies for continuous swimming with current velocity were 2.8 Hz at 0.3 m/s, 3.2 Hz at 0.4 m/s, 3.8 Hz at 0.5 m/s, respectively. The wake would be produced by direction turning of fish's tail fin and its magnitude would be verified by the difference of pressure. The pressure turbulent flow produced by its tail beat would be made in both sides, and then, the magnitude of wake should be the source of moving direction. The swimming momentum will help to support the primary factor in making a suitable design for specific fish species migrating toward the district river.

입자 영상 유속계를 이용한 초음파 수직진동에 의해 유도된 공진상태에서의 음향유동에 관한 연구 (Study of Acoustic Streaming at Resonance by Longitudinal Ultrasonic Vibration Using Particle Imaging Velocimetry)

  • 노병국;이동렬
    • 한국음향학회지
    • /
    • 제23권5호
    • /
    • pp.340-352
    • /
    • 2004
  • 28.5 ㎑의 초음파의 미세 수직진동에 의해서 유도된 음향유동 (acoustic streaming)을 레이저를 이용한 입자 영상. 유속계에 의하여 고정 유리 평판과 초음파 진동자의 사이에서의 공기 유동을 가시화 하였다. 음향유동에 의한 공기의 유동 속도의 증가를 측정하기 위해 고정 유리 평판과 초음파 진동자의 사이에서의 속도변화를 실시간으로 측정하였다. 진동자와 고정 평판의 사이의 gap에 따른 음향유동의 세기의 변화를 정량적인 공기의 유동 속도의 변화에 의해 관찰되었고 고정판과 초음파 진동자 사이의 gap에서 공진 상태를 야기시키는 공진 Gap (H=18, 24, 30, 36㎜)중에서 공진 Gap (H)이 18m일 때 최대의 음향속도가 존재함을 알 수 있었고 진동자 표면부근에서부터 고정평판사이까지의 국소 최대 난류강도의 축 방향 위치에 따른 변화는 gap의 크기에 따라 8%∼70% 이었다. 전단응력값은 반경방향 위치의 중심영역에서 최대전단응력을 가지며 와도 분포도 반경방향 위치에서 진동자 중심영역에 최대 및 최소와도 값을 가짐을 알 수 있었다.