Sedimentation basin plays an important role in urban water treatment, and there are many complicated phenomena which need to be understood for efficient design and control of it. Especially, the study on the improvement of settling efficiency is required. In this study, commercial CFD (Computational Fluid Dynamics) program, FLUENT, and particle tracking method were used to simulate the flow in sedimentation basin, and to predict the settling efficiency. Computational domain of real scale was made, and detail factors such as porous wall, and outlet trough were considered instead of being simplified. The simulation results were compared with the experimental data to calibrate the parameters of particle tracking method. Sensitivity analysis showed that the particle diameter had more significant effects on settling efficiency than the particle density. The computation results gave the best agreements with the experimental data, when the value of particle diameter was 26.5 ${\mu}{\textrm}{m}$.
Transactions of the Korean Society of Mechanical Engineers B
/
v.41
no.7
/
pp.455-462
/
2017
The magnetic interaction between elliptic Janus magnetic particles are investigated using a direct simulation method. Each particle is a one-to-one mixture of paramagnetic and nonmagnetic materials. The fluid is assumed to be incompressible Newtonian and nonmagnetic. A uniform magnetic field is applied externally in a horizontal direction. A finite-element-based fictitious domain method is employed to solve the magnetic particulate flow in the creeping flow regime. In the magnetic problem, the magnetic field in the entire domain, including the particles and the fluid, is obtained by solving the governing equation for the magnetic potential. Then, the magnetic forces acting on the particles are calculated via a Maxwell stress tensor formulation. In a single particle problem, it is found that the orientation angle at equilibrium is affected by the aspect ratio of the particle. As for the two-particle interaction, the dynamics and the final conformation of the particles are significantly influenced by the aspect ratio, the orientation, and the spatial positions of the particles. For the given positions of the particles, the fluid flow is also influenced by the orientation of each particle. The self-assembly structure of the particles is not a fixed one, but it varies with the above-mentioned factors.
Soot particles emitted from combustion processes are often coated by non-absorbing organic materials, which enhance the global warming effect of soot particles. It is of importance to study the condensation characteristics of soot particles experimentally and theoretically to reduce the uncertainty of the climate impact of soot particles. In this study, the condensational growth of soot particles in a tubular coater was modeled by a one-dimensional (1D) plug flow model and a two-dimensional (2D) laminar flow model. The effects of 2D heat and mass transports on the predicted particle growth were investigated. The temperature and coating material vapor concentration distributions in radial direction, which the 1D model could not accounted for, affected substantially the particle growth in the coater. Under the simulated conditions, the differences between the temperatures and vapor concentrations near the wall and at the tube center were large. The neglect of these variations by the 1D model resulted in a large error in modeling the mass transfer and aerosol dynamics occurring in the coater. The 1D model predicted the average temperature and vapor concentration quite accurately but overestimated the average diameter of the growing particles considerably. At the outermost grid, at which condensation begins earliest due to the lowest temperature and saturation vapor concentration, condensing vapor was exhausted rapidly because of the competition between condensations on the wall and on the particle surface, decreasing the growth rate. At the center of the tube, on the other hand, the growth rate was low due to high temperature and saturation vapor concentration. The effects of Brownian diffusion and thermophoresis were not high enough to transport the coating material vapor quickly from the tube center to the wall. The 1D model based on perfect radial mixing could not take into account this phenomenon, resulting in a much higher growth rate than what the 2D model predicted. The result of this study indicates that contrary to a previous report for a thermodenuder, 2D heat and mass transports must be taken into account to model accurately the condensational particle growth in a coater.
Kim, Jin-Kwan;Kim, Ho-Joong;Lee, Myung-Jun;Kim, Tae-Sung;Kwon, Soon-Bark
Proceedings of the SAREK Conference
/
2008.11a
/
pp.546-550
/
2008
In this study, 3-dimensional Computational Fluid Dynamics (CFD) analysis was induced to simulate air flow and particle motion in the axial flow cyclone separator. The commercialized CFD code FLUENT was used to visualize pressure drop and particle collection efficiency inside the cyclone. We simulated 4 cyclone models with different shape of vane, such as turning angle or shape of cross section. For the air flow simulation, we calculated the flow field using standard ${\kappa}-{\varepsilon}$ turbulence viscous model. Each model was simulated with different inlet or outlet boundary conditions. Our major concern for the flow filed simulation was pressure drop across the cyclone. For the particle trajectory simulation, we adopted Euler-Lagrangian approach to track particle motion from inlet to outlet of the cyclone. Particle collection efficiencies of various conditions are calculated by number based collection efficiency. The result showed that the rotation angle of the vane plays major roll to the pressure drop. But the smaller rotation angle of vane causes particle collection efficiency difference with different inlet position.
Journal of the Korean Society for Marine Environment & Energy
/
v.15
no.1
/
pp.1-8
/
2012
To arrange effectively artificial reefs for marine afforestation, tidal currents were analyzed by numerical experiments, and particle tracking based upon tidal currents were carried out to clarify the path of algae spore. The experiments were carried out by EFDC (Environmental Fluid Dynamics Code), and water column was vertically divided 10 layers. Tidal current patterns showed to be affected by main current at outside of study area, and circle currents of two were observed from analysis of residual currents. Particle tracking were experimented for 15 days at 2 installation places in which artificial reefs for marine afforestation would be deployed. According to the results of particle tracking experiment, particle movement at St.1 showed belt type along coastal line, and St.2 showed ellipse type at 300~500 m distant from coastal line. It suggest that artificial reefs for marine afforestation should be installed belt zone at station of St.1 and ellipse zone at St.2. Modelling algae transport was also tested to account for local dispersion of algae spore due to the suspended materials.
In this paper, a parallel analysis algorithm for Smoothed Particle Hydrodynamics (SPH), one of the numerical methods for fluidic materials, is introduced. SPH, which is a meshless method, can represent the behavior of a continuum using a particle-based approach, but it demands substantial computational resources. Therefore, parallel analysis algorithms are essential for SPH simulations. The domain decomposition algorithm, which divides the computational domain into partitions to be independently analyzed, is the most representative method among parallel analysis algorithms. In Discrete Element Method (DEM) and Molecular Dynamics (MD), the Cartesian coordinate-based domain decomposition method is popularly used because it offers advantages in quickly and conveniently accessing particle positions. However, in SPH, it is important to share particle information among partitioned domains because SPH particles are defined based on information from nearby particles within the smoothing length. Additionally, maintaining CPU load balance is crucial. In this study, a highly parallel efficient algorithm is proposed to dynamically minimize the size of orthogonal domain partitions to prevent excess CPU utilization. The efficiency of the proposed method was validated through numerical analysis models. The parallel efficiency of the proposed method is evaluated for up to 30 CPUs for fluidic models, achieving 90% parallel efficiency for up to 28 physical cores.
Molecular dynamics simulations have been performed to investigate the transport properties of self-diffusion coefficients in the penetrable-sphere model system. The resulting simulation data for the product of the packing fraction and the self-diffusion coefficient exhibit a transition from an increasing function of density in lower repulsive systems, where the soft-type collisions are dominant, to a decreasing function in higher repulsive systems, where most particle collisions are the hard-type reflections due to the low-penetrability effects. A modified Enskog-like equation implemented by the effective packing fraction with the mean-field energy correction is also proposed, and this heuristic approximation yields a reasonably good result even in systems of high densities and high repulsive energy barriers.
Mean concentrations of ammonia gas released as a tracer from an isolated low-rise building have been measured and predicted. Predictions were calculated using computational fluid dynamics (CFD) and two dispersion models: a diffusion model and a Lagrangian particle tracking technique. Explicit account was taken of the natural variation of wind direction by a technique based on the weighted summation of individual steady state wind direction results according to the probability density function of the wind direction. The results indicated that at distances >3 building heights downstream the weighted predictions from either model are satisfactory but that in the near wake the diffusion model is less successful. Weighted solutions give significantly improved predictions over unweighted results. Lack of plume spread is identified as the main cause of inaccuracies in predictions and this is linked to inadequate resolution of flow features and mixing in the CFD model. Further work on non-steady state simulation of wake flows for dispersion studies is recommended.
Hur, Min Young;Lee, Donggeun;Yang, Sangsun;Lee, Hae June
Applied Science and Convergence Technology
/
v.27
no.1
/
pp.14-18
/
2018
In order to understand the mechanism of the synthesis of particles using a plasma torch, it is necessary to understand the reaction mechanisms using a computer simulation. In this study, we have developed a simulation method to combine the Lagrangian scheme to follow microparticles and a nodal method to treat nanoparticles categorized with different particle sizes. The Lagrangian scheme includes the Coulomb force which affects the dynamics of larger particles. In contrast, the nodal method is adequate for the nanoparticles because the charge effect is negligible for nanoparticles but the number of nanoparticles is much larger than that of microparticles. This method is helpful to understand the dynamics and growth mechanism of micro- and nano-powder mixture observed in the experiment.
Tran, Canh-Dung;Phillips, David G.;Tran-Cong, Thanh
Korea-Australia Rheology Journal
/
v.21
no.1
/
pp.1-12
/
2009
This paper reports the suitability of a domain decomposition technique for the hybrid simulation of dilute polymer solution flows using Eulerian Brownian dynamics and Radial Basis Function Networks (RBFN) based methods. The Brownian Configuration Fields (BCF) and RBFN method incorporates the features of the BCF scheme (which render both closed form constitutive equations and a particle tracking process unnecessary) and a mesh-less method (which eliminates element-based discretisation of domains). However, when dealing with large scale problems, there appear several difficulties: the high computational time associated with the Stochastic Simulation Technique (SST), and the ill-condition of the system matrix associated with the RBFN. One way to overcome these disadvantages is to use parallel domain decomposition (DD) techniques. This approach makes the BCF-RBFN method more suitable for large scale problems.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.