• Title/Summary/Keyword: Particle Composition Analysis

Search Result 226, Processing Time 0.027 seconds

Physicochemical Characteristics of Particulate Matter Emitted from Aluminum Casting Process (알루미늄 주조과정에서 배출되는 입자상물질의 물리·화학적 특성)

  • Jeong-Min Suh;Jeong-Ho Park
    • Journal of Environmental Science International
    • /
    • v.33 no.5
    • /
    • pp.297-304
    • /
    • 2024
  • PM (Particulate Matters) was collected from a bag filter dust collector at an aluminum foundries, and its physicochemical properties were investigated using particle size analyzer and scanning electron microscopy with energy dispersive X-ray spectrometer (SEM/EDS). The median volume diameter of the particles passing through the pretreatment dust collector of the cyclone was approximately 10 ㎛. The cyclone pretreatment dust collector was shown to significantly reduce the throughput of large particles with a particle size of 100 ㎛ or more. The chemical composition of the particles showed a high Al content, and trace amounts of Mg, Si, and Zn were detected.

Monitoring of Particulate Matter and Analysis of Black Carbon and Some Particle Containing Toxic Trace in the City of Yaoundé, Cameroon

  • Tchuente, Siaka Y.F.;Saidou, Saidou;Yakum, N.Y.;Kenmoe, N.X.;Abdourahimi, Abdourahimi
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.2
    • /
    • pp.120-128
    • /
    • 2013
  • The concentration and composition of particulate matter (PM) in the atmosphere can directly reflect the environmental pollution. The atmospheric pollution in some Cameroonian cities is increasing with the industrial development and urbanization. Air pollution is inherently complex, containing PM of varied size and composition. This PM exists as a dynamic cloud interacting with sunlight and is modified by the meteorology. The reflectometer and the EDXRF spectrometry are applied to determine the concentration of some specific elements at four sites in the city of Yaound$\acute{e}$. The particular aim of the present work is to put in place data base on air pollution in urban area and elaborate regulations on the emissions issued to industrial and vehicle activities. This study provides an overview of the concentration of black carbon and some specific elements in the air, which have impacts on human health. The measurement was done by distinguishing the size of particle. So that, the particle with aerodynamic diameter between $2.5-10{\mu}m$ (so-called coarse particle) and aerodynamic diameter < $2.5{\mu}m$ (so-called fine particle) were considered to obtain more information about levels of the inhalable fraction of the location. The results obtained in four locations of the city of Yaound$\acute{e}$ show that the black carbon concentration is very considerable, the element sulfur is a major pollutant and the concentration of fine particle is very greater. The results obtained of fine and coarse filters range from $5-17{\mu}g/m^3$ and $10-18{\mu}g/m^3$ for the black carbon. S, Cu, Zn, Pb, Cd, As, Se and Hg are the specific findings of this work. The pollutants with a greater concentration are S, Pb, and Zn. These later seem to be non-uniformly, non-regular in some location and high compared to other countries. This work allows us to make a potential relation between pollutants and emission sources. In this framework, some suggestions have been proposed to reduce emissions for an improvement of the air quality in the environment and thus, the one of the city of Yaound$\acute{e}$.

Solid Lipid Nanoparticle Formulation of All Trans Retinoic Acid

  • Lim, Soo-Jeong;Lee, Mi-Kyung;Kim, Chong-Kook
    • Journal of Pharmaceutical Investigation
    • /
    • v.31 no.3
    • /
    • pp.167-172
    • /
    • 2001
  • All-trans retinoic acid (ATRA), vitamin A acid, has been shown to exert anticancer activity in a number of types of cancers, particularly in acute promyelocytic leukaemia (APL). Due to its highly variable bioavailability and induction of its own metabolism after oral treatment, development of parenteral dosage forms are required. However, its poor aqueous solubility and chemical unstability give major drawbacks in parenteral administration. This study was undertaken to investigate a possibility to develop a parenteral formulation of ATRA by employing solid lipid nanoparticle (SLN) as a carrier. By optimizing the production parameters and the composition of SLNs, SLNs with desired mean particle size (<100 nm) as a parenteral dosage form could be produced from trimyristin (as solid lipid), Egg phosphatidylcholine and Tween 80 (as SLN stabilizer). The mean particle size of SLN formulation of ATRA was not changed during storage, suggesting its physical stability. Thermal analysis confirmed that the inner lipid core of SLNs exist at solid state. The mean particle size of ATRA-loaded SLNs was not significantly changed by the lyophilization process. ATRA could be efficiently loaded in SLNs, while maintaining its anticancer activity against HL-60, a well-known APL cell line. Furthermore, by lyophilization, ATRA loaded in SLN could be retained chemically stable during storage. Taken together, our present study demonstrates that physically and chemically stable ATRA formulation adequate for parenteral administration could be obtained by employing SLN technology.

  • PDF

Improving the Capacity Retention of LiNi0.8Co0.2O2by ZrO2 Coating

  • Lee Sang-Myoung;Oh Si-Hyoung;Lee Byung-Jo;Cho Won-Il;Jang Ho
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.1
    • /
    • pp.6-9
    • /
    • 2006
  • The effect of $ZrO_2$-coating on the electrochemical properties of the cathode material $LiNi_{0.8}Co_{0.2}O_2$ was investigated using EPMA, TEM, and EIS. In particular, we facused on the distribution of the $ZrO_2$ on the particle surface to study the relation between electrochemical properties of the coated cathode and the distribution of the coating materials in the particle. Based on the results from the composition analysis and electrochemical tests, it was found that the coating layer consisted of nano-sized $ZrO_2$ particles attached non-uniformly on the particle surface and the $ZrO_2$ layer significantly improved the electrochemical properties of the cathode by suppressing the impedance growth at the interface between the electrodes and the electrolyte.

Time Resolved Analysis of Water Soluble Organic Carbon by Aerosol-into-Mist System (분진-미스트 시스템을 이용한 실시간 수용성 유기탄소 분석)

  • Cho, In-Hwan;Park, Da-Jeong;Bae, Min-Suk
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.6
    • /
    • pp.497-507
    • /
    • 2015
  • Real-time and quantitative measurement of the chemical composition in ambient aerosols represents one of the most challenging problems in the field of atmospheric chemistry. In the present study, time resolved application by Aerosol-into-Mist System (AIMS) following by total organic carbon analyzer (TOC) has been developed. The unique aspect of the combination of these two techniques is to provide quantifiable water soluble organic carbon (WSOC) information of particle-phase organic compounds on timescales of minutes. We also demonstrated that the application of the AIMS method is not limited to water-soluble organic carbon but inorganic ion compounds. By correlating the volume concentrations by optical particle sizer (OPS), water soluble organic carbon can be highly related to the secondary organic products. AIMS-TOC method can be potentially applied to probe the formation and evolution mechanism of a variety of SOA behaviors in ambient air.

Synthesis of Cordierite and Preparation of Refractory Setter from Domestic Raw Materials (Cordierite의 합성 및 내화갑제조에 관한 연구)

  • 지응업;최상욱;김광호
    • Journal of the Korean Ceramic Society
    • /
    • v.12 no.4
    • /
    • pp.19-28
    • /
    • 1975
  • In order to obtain the superior refractory setter having better spalling resistance, cordierite was synthesized from domestic raw materials. Raw mixtures were fired between 125$0^{\circ}C$ and 140$0^{\circ}C$, and qualitative determination of crytallization was investigated by x-ray diffraction analysis. The results obtained are as follows; 1) The optimum batch composition of synthesized cordierite is 80.5% of Hadong kaolin (pink), 14% of Kyulsung tromolite talc and 5.5% of magnesia clinker, and the firing temperature is 1375$^{\circ}C$. 2) The composition of the refractory setter which exhibits the best values for the thermal properties is 40% of synthesized cordierite, 30% of kaolin chamotte(contains more than 60% of mullite), and 30% of Japanese clay. 3) The optimum particle size distribution of ternary mixture consists of 50% of coarse articles (3.327-1.168mm), 25% of intermediate particles (1.168-0.208mm) and 25% of fine particles (0.208-0.000mm).

  • PDF

A Study on Foam Formation of Slag-Quartz-$Na_2$$CO_3$ System (Slag-Quartz-$Na_2$$CO_3$계의 Foam형성에 관한 연구)

  • 박현수;김종희;천성순
    • Journal of the Korean Ceramic Society
    • /
    • v.13 no.3
    • /
    • pp.21-27
    • /
    • 1976
  • Foam formation of Slag-Quartz-$\textrm{Na}_2\textrm{CO}_3$ system was investigated. The foaming agent used was sulphide and sulphate compounds which are present in the slag. The microstructures and x-ray analysis of foam slag, the effect of composition and particle size of slag on the formation temperature, and foam size and distribution of slag foam were studied. The Increment of $\textrm{Na}_2\textrm{O}$ in the slag batch composition decrease the initial foam formation temperature and enhance the foam growth. The formation of temperature and soaking time had pronounced effect on the foam growth and increasing the glass phase in the slag foam.

  • PDF

The Influence of the Asian Dust on the Metallic Composition of Fine and Coarse Particle Fractions (황사와 비황사기간의 중금속 농도분포 특성: 2001년 황사기간에 대한 비교연구)

  • 최규훈;김기현;강창희;이진홍
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.1
    • /
    • pp.45-56
    • /
    • 2003
  • In this study the distribution patterns of the metallic components were analyzed both before and after the Asian Dust (AD) events at 2001 by comparing the chemical composition of metallic components in terms of various statistical methods. According to the AD/NAD concentration ratio of metallic components, the main components of crustal soils were exhibiting the values above 1.0; but opposite results were seen dominantly for hazardous metallic components. Examination of fine-to-coarse (F/C) ratios of metallic components showed higher values for major anthropogenic components including Pb (5.83). Ni (2.61), etc. Comparison of our measurement data with those obtained within and across the Korean peninsula indicated that the metallic distribution patterns of the study area can be distinguished from previous studies. The results of our analysis, when investigated in relation with air mass movement patterns. indicated evidence of the direct influence of AD events and anthropogenic processes.

Preparation and Characterization of Monolithic Poly(methacrylic acid - ethylene glycol dimethacrylate) Columns for High Performance Liquid Chromatography

  • Yan, Hong-yuan;Row, Kyung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.1
    • /
    • pp.71-76
    • /
    • 2006
  • Porous polymer monolithic columns were prepared by the direct free radical copolymerization of methacrylic acid and ethylene glycol dimethacrylate within the confines of a chromatographic column in the presence of toluene-dodecanol as a porogenic solvent. The separation characteristics of the monolithic columns were tested by a homologous series of xanthine derivatives, theophylline and caffeine. The effects of the polymerization mixture composition and polymerization condition, mobile phase composition, flow rate and temperature on the retention times and separation efficiencies were investigated. The results showed that the selection of correct porogenic solvents and appropriate polymerization conditions are crucial for the preparation of the monolithic stationary phases. The separation efficiency was only extremely weakly dependent on flow rate and temperatures. Hydrogen-bonding interaction played an important role in the retention and separation. Compared with conventional particle columns, the monolithic column exhibited good stability, ease of regeneration, high separation efficiency and fast analysis.

Thermogravimetric Analysis of Rice Husk Flour for a New Raw Material of Lignocellulosic Fiber-Thermoplastic Polymer Composites

  • Kim, Hyun-Joong;Eom, Young-Guen
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.59-67
    • /
    • 2001
  • Rice husk flours were analyzed by chemical composition and thermogravimetric methods in nitrogen atmosphere to discuss its feasibility as a raw material for manufacturing agricultural lignocellulosic fiber-thermoplastic polymer composite. It was revealed in the chemical composition analysis that rice husk flour was composed of moisture, 5.0%; lignin, 21.6%; holocellulose, 60.8%; ash, 12.6%. In the thermogravimetric analysis (TGA), thermal decomposition behavior of rice husk flour from room temperature to $350^{\circ}C$ was similar to that of wood flour, but rice husk flour was more thermally stable from 350 to $800^{\circ}C$ than wood flour because of higher silica content in the rice husk flour and smaller particle size of rice husk flour. The activation energy of thermal decomposition was evaluated using Flynn & Wall expression. As the thermal decomposition proceeded in rice husk flour, the activation energy of thermal decomposition appeared almost constant up to ${\alpha}=0.25$, but thereafter increased. Activation energy of thermal decomposition in wood flour, however, decreased steeply up to ${\alpha}=0.3$, but thereafter remained almost constant. From the results, rice husk flour was thought be a substitute for wood flour in manufacturing agricultural lignocellulosic fiber-thermoplastic polymer composite in the aspect of thermal decomposition.

  • PDF