• Title/Summary/Keyword: Partially penetrated drain

Search Result 4, Processing Time 0.016 seconds

Optimum PVD installation depth for two-way drainage deposit

  • Chai, J.C.;Miura, N.;Kirekawa, T.;Hino, T.
    • Geomechanics and Engineering
    • /
    • v.1 no.3
    • /
    • pp.179-191
    • /
    • 2009
  • For a two-way drainage deposit under a surcharge load, it is possible to leave a layer adjacent to the bottom drainage boundary without prefabricated vertical drain (PVD) improvement and achieve approximately the same degree of consolidation as a fully penetrated case. This depth is designated as an optimum PVD installation depth. Further, for a two-way drainage deposit under vacuum pressure, if the PVDs are fully penetrated through the deposit, the vacuum pressure will leak through the bottom drainage boundary. In this case, the PVDs have to be partially penetrated, and there is an optimum installation depth. The equations for calculating these optimum installation depths are presented, and the usefulness of the equations is studied by using finite element analysis as well as laboratory model test results.

A Study of Consolidation Behavior of Clay Ground with Partially Penetrated PVD under Artesian Pressure (연직배수재가 부분 관입된 점토지반의 피압에 따른 압밀 거동에 관한 연구)

  • Yun, Daeho;Nguyen, Ba Phu;Kim, Jaehong;Kim, Yuntae
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.1
    • /
    • pp.47-57
    • /
    • 2016
  • Many researchers reported that artesian pressure exists in thick soft ground of Busan Nakdong river estuary. Artesian pressure in soft ground could affect rate of consolidation, settlement and drainage capasity of prefabricated vertical drain(PVD). This paper investigated consolidation behaviors of soft ground with partially penetrated PVD subjected to artesian pressure. Laboratory tests with 1-dimensional large column equipment and their numerical analyses were carried out. Test results showed that the consolidation settlement of clay ground with artesian pressure was higher than that without artesian pressure. Due to artesian pressure, the dissipation rate of excess pore water pressure was reduced in soft ground with artesian pressure, especially at bottom part of clay ground. Numerical results were in good agreement with experimental test results.

Nonlinear Consolidation Analysis Considering Radial Drainage (수평배수를 고려한 비선형 압밀해석)

  • Lee, Song;Chae, Young-Su;Hwang, Koou-Ho;Jeon, Je-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.6
    • /
    • pp.105-115
    • /
    • 2000
  • 본 연구는 현실에 부합하는 연약지반의 압밀거동을 예측하기 위한 연구로서, 일단 3차원 배수 조건하에서 지반의 자중 및 압축성과 투수성의 비선형적 성질이 고려된 비선형 압밀모델을 구성하였다. 또한 연직 배수재의 시공과정에서 발생할수 있는 지반의 교란현상 및 다양한 이질층의 구성, 점증적인 하중재하 조건, 연직배수재의 부분관입 조건에 대한 고려가 가능하도록 비선형 압밀모델을 수정, 보완하였다. 이상의 연구결과를 바탕으로 유한차분방법에 의한 수치해석을 실시하였고 최종적으로 각종 희귀분석과정을 도입한 3차원 비선형 압밀해석 프로그램을 개발하였다. Ska-Edeby의 시험시공 사례를 통한 개발 프로그램의 검증을 실시하였는데, 시험시공 사례의 경우, 현장에서 측정한 깊이별 침하량 및 간극수압 결과를 개발 프로그램에 의한 예측결과와 비교, 분석하였다. 또한 개발 프로그램을 이용하여 다층지반 해석과 관련된 기존 해석방법의 문제점 및 지반의 교란효과와 연직배수재의 부분관입조건, 점증적인 하중재하 조건등이 지반의 압밀거동에 미치는 영향에 대해 살펴보았다.

  • PDF

PDSS Analysis on Partially Penetrated Band Drains in Soft Clay Ground (밴드드레인이 부분관입된 연약점토지반을 위한 PDSS 해석)

  • 정성교;은성민;백승훈;이대명
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.365-372
    • /
    • 1999
  • The plane deformation and spatial seepage(PDSS) analysis was developed to consider 3D flow of excess pore water as well as plane deformation of ground. Here is newly developed an equivalent model for PDSS analysis, which was the purpose to reduce number of finite elements and to take the effects of smear and well resistance into consideration. As the result of PDSS analysis with applying the new model, it is showed that the settlement-tin e relationship by PDSS agrees well with those of Plane strain(PS) and axisymmetric analyses, irrespective of existence of untreated layer. And the excess pore pressure distribution by PDSS is relatively agreed with that of axisymmetric analysis, not with that of PS.

  • PDF