• 제목/요약/키워드: Partial shading condition

검색결과 19건 처리시간 0.023초

Adaptive Partial Shading Determinant Algorithm for Solar Array Systems

  • Wellawatta, Thusitha Randima;Choi, Sung-Jin
    • Journal of Power Electronics
    • /
    • 제19권6호
    • /
    • pp.1566-1574
    • /
    • 2019
  • Maximum power point tracking (MPPT) under the partial shading condition is a challenging research topic for photovoltaic systems. Shaded photo-voltaic module result in complex peak patterns on the power versus voltage curve which can misguide classical MPPT algorithms. Thus, various kinds of global MPPT algorithms have been studied. These have typically consisted of partial shading detection, global peak search and MPPT. The conventional partial shading detection algorithm aims to detect all of the occurrences of partial shading. This results in excessive execution of global peak searches and discontinuous operation of the MPPT. This in turn, reduces the achievable power for the PV module. Based on a theoretical investigation of power verse voltage curve patterns under various partial shading conditions, it is realized that not all the occurrences of partial shadings require a global peak search. Thus, an intelligent partial shading detection algorithm that provides exact identification of global peak search necessity is essential for the efficient utilization of solar energy resources. This paper presents a new partial shading determinant algorithm utilizing adaptive threshold levels. Conventional methods tend to be too sensitive to sharp shading patterns but insensitive to smooth patterns. However, the proposed algorithm always shows superb performance, regardless of the partial shading patterns.

전면적차광과 부분차광이 콩 엽록소 형광 반응에 미치는 영향 (Effects of Overall Shading and Partial Shading on the Response of Chlorophyll Fluorescence of Soybean)

  • 조유나;조은이;정재혁;윤창용;안규남;조재일
    • 한국농림기상학회지
    • /
    • 제23권3호
    • /
    • pp.163-168
    • /
    • 2021
  • 광은 식물 광합성에 반드시 요구되는 에너지이다. 차광의 종류를 전면차광과 부분차광으로 구분하고, 각각의 차광 조건에서 생육한 콩의 엽록소 형광을 관측하여 광합성능을 평가하였다. 전면차광에서는 SPAD값으로 대표되는 엽록소 농도와 광이용효율을 표현하는 ETR (Electron Transport Rate)이 크게 낮아졌다. 차광 박스 제거 후에 SPAD와 ETR 모두 대조구와 같은 정도가 되었으나, 열 소산 기작을 나타내는 NPQ (Non-Photochemical fluorescence Quenching)는 높아졌다. 이렇게 전면차광을 겪었던 콩의 광이용효율은 회복했지만, 높아진 NPQ가 광인산화 효율을 떨어뜨리므로 실제 노지 광합성량은 필연적으로 낮아질 것이다. 부분 차광에서도 SPAD와 ETR이 대조구와 큰 차이를 보이지 않았으나, NPQ는 높은 모습을 보였다. 따라서, 도시 농업 또는 영농형 태양광과 같은 부분차광 조건의 광합 성량은 단순히 작물의 광이용효율과 누적 광 에너지량으로 계산한 추정값보다 작을 것으로 예상된다.

Maximum Power Point Tracking under Partial Shading condition

  • Kashif, Muhammad Fayyaz;Park, Yongsoon;Sul, Seung-Ki
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2011년도 추계학술대회
    • /
    • pp.40-41
    • /
    • 2011
  • Partial shading on a Photo Voltaic panel can generate the local maximum power points on the powervoltage curve of the panel. Presence of the local peaks can disturb the efficient operation of maximum power point tracking (MPPT).In this study, the MPPT under partial shading condition is investigated. To circumvent the trappings into the local peaks, the results of the study are enumerated and discussed.

  • PDF

태양전지 어레이 음영 변화에 따른 손실 보상을 위한 최대전력점 추종 기법 (Real Maximum power point tracking for loss compensation of PV array under partially shaded condition)

  • 정훈영;지용혁;정두용;이수원;원충연
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2009년도 춘계학술대회 논문집
    • /
    • pp.317-320
    • /
    • 2009
  • Under partial shading condition, the multiple local maxima can be existed on the output characteristics of PV array. In case of the conventional MPPTs (i.e P&O or IncCond), the failure of maximum power point tracking could be occurred under partial shading condition(PSC). The problems are deduced by the analysis of conventional MPPTs. In this paper, a real maximum power point tracking for PV array under partially shaded condition is proposed. And proposed MPPT is analyzed by case study. It is confirmed by simulation results that the proposed MPPT can track the real MPP under partial shading condition.

  • PDF

PV모듈의 음영 상태 및 바이패스 다이오드 단락 고장 특성 분석 (The Characteristics of PV module under the Partial Shading Condition and with a Failure of Bypass Diode with Short)

  • 고석환;주영철;소정훈;황혜미;정영석;강기환
    • 한국태양에너지학회 논문집
    • /
    • 제36권4호
    • /
    • pp.41-47
    • /
    • 2016
  • A bypass diode is connected in parallel to solar cells with opposite polarity. The advantage of using the bypass diode is circumvented a destructive efforts of hot-spot heating in the photovoltaic(PV) module. In addition, it is possible to reduce a energy loss under the partial shading on the PV module. This paper presents a characteristic of photovoltaic module under partial shading condition and with defective bypass diode by using the experimental data. The results of field testing for each photovoltaic modules, when photovoltaic system which is connected power grid is operating, the inner junction-box temperature of shading photovoltaic module is high $5^{\circ}C$ because of difference of flowing current through into bypass diode. And incase of not operating photovoltaic system, the inner junction-box temperature of module with defective bypass diode is greatly higher than partial shading PV module.

Effects of Shading on the Growth and Chlorophyll Fluorescence under Agrivoltaic System Conditions

  • Hoejeong Jeong;Myeong-Gue Choi;Woon-Ha Hwang
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.120-120
    • /
    • 2022
  • Agrivoltaic System (AVS) was introduced with the concept that it could generate electricity by using the extra light remain after crops use for photosynthesis in farm, which can earn additional income. However, crop yield was declined under the AVS condition due to the decrease in light energy. In the past, many researchers have been studied about crop states under shading conditions. However, the phenomenon of partial shading such as under the AVS is not well studied. In this study, to figure out the response of crop under the different light conditions, the electron transport rate (ETR) and non-photochemical quenching (NPQ) of rice was investigated using the chlorophyll fluorescence measurement. Also, physiological changes of crops under the shading conditions were investigated. The growth experiment under partial shading under AVS and overall shading which made of 35% shade cloth was conducted to understand the eco-physiological responses of rice to light in terms of the photosynthesis. Under the shading conditions, SPAD value and chlorophyll contents were higher, but the leaf thickness was lower than control. The overall shading condition show lower ETR than others during the growing season. In contrast, NPQ was higher than other treatments. This means the available light energy cannot contribute to photosynthesis under the shading condition.

  • PDF

An Improved Global Maximum Power Point Tracking Scheme under Partial Shading Conditions

  • Kim, Rae-Young;Kim, Jun-Ho
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제2권1호
    • /
    • pp.65-68
    • /
    • 2013
  • A photovoltaic array exhibits several local and single global maximum power points under partial shading conditions. To track the global maximum power point precisely, a novel global maximum power point tracking scheme is proposed in this paper. In the proposed scheme, robustness of the tracking performance has been improved by enhancing searching profile. In addition, the paper addresses the tracking failure condition, and provides the experimental verification with several simulation and experimental results.

A Novel Partial Shading Detection Algorithm Utilizing Power Level Monitoring

  • Wellawatta, Thusitha;Seo, Young-Tae;Choi, Sung-Jin
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2017년도 전력전자학술대회
    • /
    • pp.136-137
    • /
    • 2017
  • Maximum power point tracking (MPPT) under partial shading condition (PSC) is a challenging process in the PV array system. The shaded PV panel makes different peak patterns on the P-V curve and misguides the MPPT algorithm. Various kinds of global MPP (GMPP) detecting algorithms are used to overcome this issue. Generally, too frequent execution of GMPP tracking algorithm reduces the achievable power of PV panel due to time spent on the scanning process. Thus, partial shading detection algorithm is essential for efficient utilization of solar energy source. While conventional method only detects fast shading patterns, the proposed algorithm always shows superb performance regardless of the speed of partial shading patterns.

  • PDF

태양광시스템에서 바이패스 다이오드 배열의 영향도 분석 (Effects of Bypass Diode Array Configurations on Solar System)

  • 박소영;이종환
    • 반도체디스플레이기술학회지
    • /
    • 제21권1호
    • /
    • pp.127-131
    • /
    • 2022
  • The effect of bypass diodes on the output energy of solar cells was investigated under the condition of partial shading. The maximum power point was estimated using the perturbation & observation algorithm, taking into account the correlation effect between the arrangement and number of bypass diodes. The performance of the bypass diode was tested under the consideration of the partial shading effect and simulated using a Matlab/Simulink.

Evaluation of a FPGA controlled distributed PV system under partial shading condition

  • Chao, Ru-Min;Ko, Shih-Hung;Chen, Po-Lung
    • Advances in Energy Research
    • /
    • 제1권2호
    • /
    • pp.97-106
    • /
    • 2013
  • This study designs and tests a photovoltaic system with distributed maximum power point tracking (DMPPT) methodology using a field programmable gate array (FPGA) controller. Each solar panel in the distributed PV system is equipped with a newly designed DC/DC converter and the panel's voltage output is regulated by a FPGA controller using PI control. Power from each solar panel on the system is optimized by another controller where the quadratic maximization MPPT algorithm is used to ensure the panel's output power is always maximized. Experiments are carried out at atmospheric insolation with partial shading conditions using 4 amorphous silicon thin film solar panels of 2 different grades fabricated by Chi-Mei Energy. It is found that distributed MPPT requires only 100ms to find the maximum power point of the system. Compared with the traditional centralized PV (CPV) system, the distributed PV (DPV) system harvests more than 4% of solar energy in atmospheric weather condition, and 22% in average under 19% partial shading of one solar panel in the system. Test results for a 1.84 kW rated system composed by 8 poly-Si PV panels using another DC/DC converter design also confirm that the proposed system can be easily implemented into a larger PV power system. Additionally, the use of NI sbRIO-9642 FPGA-based controller is capable of controlling over 16 sets of PV modules, and a number of controllers can cooperate via the network if needed.