• Title/Summary/Keyword: Partial resonant circuit

Search Result 52, Processing Time 0.02 seconds

Efficiency and Power Factor Improvement of Induction Motor Using Single-Phase Back Rectifier (단상 강압 정류기를 이용한 유도전동기의 효율 및 역률 개선)

  • 문상필;이현우;서기영
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.4
    • /
    • pp.22-29
    • /
    • 2002
  • Usually, much harmonics are included and cause harmonic loss of motor, torque pulsation, electro-magnetic noise and shock etc. by switching function of inverter when drive induction motor variableness inside. It applied partial resonant Buck converter and three phase voltage type SPWM inverter circuit to induction motor driving system in this paper that see to solve such problem. Changed operation condition variously to do input current of circuit that propose sine-wave by unit power factor almost and capacitor supplied bringing back to life voltage by power supply arranging properly assistance diode and electric power switching. Power factor and efficiency improved as that minimize variation of input at power supply voltage polarity reverse by that add voltage reversal function. Also, by using output filter, reduced harmonic of output line to line voltage components, and introduce state space analysis and forecast operation of rectifier. Such all items confirmed validity through simulation and an experiment.

PWM-PFC Step-Up Converter For Novel Loss-Less Snubber (새로운 무손실 스너버에 의한 PWM-PFC 스텝-업 컨버터)

  • Kwak Dong-Kurl;Lee Bong-Seob;Jung Do-Young
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.1 s.307
    • /
    • pp.45-52
    • /
    • 2006
  • In this paper, authors propose a step-up converter of pulse width modulation (PWM) and power factor correction (PFC) by using a novel loss-less snubber. The proposed converter for a discontinuous conduction mode (DCM) eliminates the complicated circuit control requirement and reduces the size of components. The input current waveform in the proposed converter is got to be a sinusoidal form of discontinuous pulse in proportion to magnitude of ac input voltage under the constant duty cycle switching. Thereupon, the input power factor is nearly unity and the control method is simple. In the general DCM converters, the switching devices are fumed-on with the zero current switching (ZCS), and the switching devices must be switched-off at a maximum reactor current. To achieve a soft switching (ZCS and ZVS) of the switching turn-off, the proposed converter is constructed by using a new loss-less snubber which is operated with a partial resonant circuit. The result is that the switching loss is very low and the efficiency of converter is high. Some simulative results on computer and experimental results are included to confirm the validity of the analytical results.