• 제목/요약/키워드: Partial penetration laser welding

검색결과 18건 처리시간 0.02초

390MPa급 고장력강판의 경치기 레이저 용접에서 부분용입 용접의 적용 가능성에 대한 연구 (A Study on the Feasibility of Partial Penetration Laser Welding for the Lap Joint of 390MPa High Strength Steel Sheets)

  • 이경돈;박기영;김주관
    • Journal of Welding and Joining
    • /
    • 제20권2호
    • /
    • pp.95-101
    • /
    • 2002
  • After high power lasers are avaliable in the commercial market, the number of applications of the laser welding has been increased in manufacturing industries. Although the tailored blank laser welding of butt jointed steel sheets is well known recently in the automotive industries, the lap joint laser welding is a new technology to the automotive manufacturing people as well as the design people. But the deep penetration laser welding seems to be preferred to the partial penetration welding for the lap joint welding in the automotive manufacturers because the partial penetration is a serious deflect for the butt joint. In this study, the feasibility of partial penetration welding fur the lap joint $CO_2$ laser welding was studied fur the 1mm thick 390MPa high strength steel sheets for automotive bodies. The process window of the lap joint partial penetration welding was obtained from experiments with the gap size and the welding speed as process parameters. The partial penetration welding was found excellent on the basis of the tensile shear strength and sectional geometry. The bead width, input energy Per volume, tensile-shear strength, deformation energy and the sectional geometries after tensile-shear tests of partial penetration welded specimens are compared with those of full penetration welded specimens with a series of gaps and welding speeds.

자동차용 강판의 겹치기 $CO_2$ 레이저 용접에서 발생되는 플라즈마 특성에 관한 연구 (Study on the characteristics of the plasma induced by lap-joint $CO_2$ laser welding of automotive steel sheets)

  • 남기중;박기영;이경돈
    • 한국레이저가공학회지
    • /
    • 제5권1호
    • /
    • pp.33-42
    • /
    • 2002
  • In order to investigate the characteristics of the plasma induced by lap-joint CO$_2$ laser welding of automotive steel sheets, the effects of welding speed, shield gas flow rate, gap size, and laser beam defocus to plasma intensity emitted from keyhole have been investigated. The plasma light is measured by fiber and photodiode. Also, the plasma images were captured by the high speed digital camera in 1000frames/sec in order to correlate the plasma light signal with plasma pattern. From the results, it is observed that the difference of the plasma intensity for between the deep penetration and partial penetration exists from 1.2 to 2 times. The plasma light intensity decreased in case of the deep penetration Is observed due to the exhausting of the plasma gas under the sheet. On the other hand, under the conditions of the deep penetration, the plasma intensity is significantly increased by controling the conditions decreasing the penetration depth. It was specially founded that the effect of 0.3mm gap size at partial penetration condition is approximately similar to deep penetration in 0mm gap. It is concluded that the plasma intensity is able to evaluate the penetration depth in lap-joint welding and appears to offer the most straightforward correlation to the welding process.

  • PDF

고강도 Al합금 A5083 및 A7N01의 $CO_2$ 레이저 용접성 ($CO_2$ Laser Weldablity of High Strength Al Alloy A5038 and A7N01)

  • 김장량;하용수;강정윤;김인배
    • 한국레이저가공학회지
    • /
    • 제4권2호
    • /
    • pp.1-12
    • /
    • 2001
  • This study has been performed to evaluate basic characteristics of CW-CO$_2$ laser welding process of A5083 and A7N01 Al alloy. The effect of welding parameters, such as shielding gas, gas flow rate, laser power and welding speed on the bead shape and porosity from bead on plate welding tests have been investigated. Welds shielded by He gas had deeper penetration and better bead shape than those shielded by Ar. The penetration depth was augmented with the increase of laser Power and the decrease of welding speed. Welds of A7N01 alloy had deeper penetration than those of A5083 alloy In beads of A5083 alloy which has deeper penetration, the volume fraction of porosities was high due to the number of its was few, but size of its was larger. The case of deeper penetration beads of A7N01 alloy, the porosity reduced under relatively higher power The Volume fraction of porosities in weld of A5083 alloy was significantly higher than that in weld of A7N01 alloy.

  • PDF

CONTROL OF LASER WELD KEYHOLE DYNAMICS BY POWER MODULATION

  • Cho, Min-Hyun;Dave Farson
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.600-605
    • /
    • 2002
  • The keyhole formed by high energy density laser-material interaction periodically collapses due to surface tension of the molten metal in partial penetration welds. The collapse sometimes traps a void at the bottom of the keyhole, and it remains as welding defects. This phenomenon is seen as one cause of the instability of the keyhole during laser beam welding. Thus, it seems likely that improving the stability of the keyhole can reduce voids and uniform the penetration depth. The goal of this work is to develop techniques for controlling laser weld keyhole dynamics to reduce weld defects such as voids and inconsistent penetration. Statistical analysis of the penetration depth signals in glycerin determined that keyhole dynamics are chaotic. The chaotic nature of keyhole fluctuations and the ability of laser power modulation to control them have been demonstrated by high-speed video images of laser welds in glycerin. Additionally, an incident leading beam angle is applied to enhance the stability of the keyhole. The quasi-sinusoidal laser beam power of 400Hz frequency and 15$^{\circ}$ incident leading beam angle were determined to be the optimum parameters for the reduction of voids. Finally, chaos analyses of uncontrolled signals and controlled signals were done to show the effectiveness of modulation on the keyhole dynamics. Three-dimensional phase plots for uncontrolled system and controlled system are produced to demonstrate that the chaotic keyhole dynamics is converted to regular periodic behavior by control methods: power modulation and incident leading beam angle.

  • PDF

레이저 키홀 용접의 열원 모델링: Part 1-비드 용접 (Heat Source Modeling of Laser Keyhole Welding: Part 1-Bead Welding)

  • 이재영;이원범;유중돈
    • Journal of Welding and Joining
    • /
    • 제23권1호
    • /
    • pp.48-54
    • /
    • 2005
  • Laser keyhole welding is investigated using a three-dimensional Gaussian heat source, and the heat source parameters such as the keyhole depth, welding efficiency and power density distribution factor are determined in a systematic way. For partial penetration, the keyhole depth is same as the penetration and is predicted using the experimental data. The welding efficiency is calculated using the ray-tracing method and the power density distribution factor is determined from the bead shape. Full penetration is classified into the transition, normal and excessive modes depending on the degree of keyhole opening. Thermal analysis of the bead-on-plate welds is conducted using the Gaussian heat source, and the calculated weld geometries show reasonably good agreements with the experimental results.

하이드로포밍용 열연 강재의 레이저 용접성 및 성형 특성 (Laser Weldability and Formability of Hot Rolled Steels for Hydroforming Applications)

  • 이원범;이종봉
    • Journal of Welding and Joining
    • /
    • 제22권6호
    • /
    • pp.19-24
    • /
    • 2004
  • The laser welding and its analysis of thin-sheet carbon steels were carried out with high power $CO_{2}$ laser. The main factor of weld quality of laser welding is gap and edge quality. This work was preformed to focus on the gap tolerance problem during laser welding. First, bead on plate welding of thin sheet was examined to investigate the effect of laser welding variables, and to obtain optimum welding condition. Butt welding was also carried out to show the effect of gap on the laser weldability of thin sheet. In order to investigate the effect of gap on formability of welded thin sheet, LDH test was caried out. At high welding speed, the partial penetration was obtained by low heat input. Otherwise, porosity was formed in the bead at low weld speed because of too much heat input. The optimum welding condition of welding was derived from bead width, penetration and hardness property. The maximum gap tolerance on laser welding was observed to be about 0.2mm. This gap size has good relationship with beam size of laser spot(about 0.3mm). The formability of welded sheet was about $80{\%}$ value of base metal and the gap size has not affected on the formability, although weld quality is dependent on the gap size.

연속파형 Nd:YAG레이저를 이용한 S45C 강판의 레이저 용접 모니터링에 관한 연구 (A Study on the Monitoring of Laser Welding for S45C Steel Sheets Using Nd:YAG Laser with Continuous Waves)

  • 김도형;신호준;유영태
    • 한국생산제조학회지
    • /
    • 제21권5호
    • /
    • pp.814-823
    • /
    • 2012
  • Fluctuation of light intensity from the keyhole becomes more significant in full penetration welding than partial penetration welding, since the plasma produced in the keyhole can escape from the rear side of the keyhole. The plasma optical radiation emitted during Nd:YAG laser welding of S45C steel samples has been detected with a Photodiode and analyzed under different process conditions. As the results, the BOP was performed for welding, behavior of plasma, spatter or plume was monitored to determine the reference signal. Then, random combination was made for comparison with the reference signal, which aimed at verifying reliability of the welding monitoring system that this study intended to develop.

레이저-GMA 하이브리드 용접에서 유동에 의한 기포 및 기공 형성 해석 (Numerical Simulation of Bubble and Pore Generations by Molten Metal Flow in Laser-GMA Hybrid Welding)

  • 조원익;조정호;조민현;이종봉;나석주
    • Journal of Welding and Joining
    • /
    • 제26권6호
    • /
    • pp.67-73
    • /
    • 2008
  • Three-dimensional transient simulation of laser-GMA hybrid welding involving multiple physical phenomena is conducted neglecting the interaction effect of laser and arc heat sources. To reproduce the bubble and pore formations in welding process, a new bubble model is suggested and added to the established laser and arc welding models comprehending VOF, Gaussian laser and arc heat source, recoil pressure, arc pressure, electromagnetic force, surface tension, multiple reflection and Fresnel reflection models. Based on the models mentioned above, simulations of laser-GMA hybrid butt welding are carried out and besides the molten pool flow, top and back bead formations could be observed. In addition, the laser induced keyhole formation and bubble generation duo to keyhole collapse are investigated. The bubbles are ejected from the molten pool through its top and bottom regions. However, some of those are entrapped by solid-liquid interface and remained as pores. Those bubbles and pores are intensively generated when the absorption of laser power is largely reduced and consequently the full penetration changes to the partial penetration.

파이버 레이저의 스테인리스강 용접시 인프로세스 모니터링을 위한 유기 플라즈마와 방사신호간의 상관성 연구(I) - 박판 용접시 측정신호의 특성 변화 - (A Study on Correlationship between the Induced Plasma and Emission Signals for In-process Monitoring in Stainless Steel Welding of Fiber Laser (I) - Properties Changes of the Measured Signals in a Thin Plate Welding -)

  • 이창제;김종도
    • Journal of Welding and Joining
    • /
    • 제32권6호
    • /
    • pp.64-69
    • /
    • 2014
  • The applications by using fiber laser have increased recently. However, due to high beam quality of fiber laser, it is inappropriate to apply the existing laser welding monitoring technology to the fiber laser welding as it is. On this study, thus, we analyzed emission signal with RMS and FFT for the in-process monitoring during fiber laser welding. 12mm-thick 304L stainless steel sheet was used in fiber laser welding and the result showed as follows: The intensity changes in RMS did not clarify the distinction between full penetration and partial penetration. However, as welding speed increases, specific frequency also increases in regards of frequency analysis by using FFT.

특징영역별 분산분석에 의한 이종두께 겹치기 $CO_2$ 레이저 용접에 대한 연구 (A Study on the Lap Joint $CO_2$ Laser Welding of Different Gauge Sheets Using ANOVA in Characteristic Zones)

  • 이경돈
    • Journal of Welding and Joining
    • /
    • 제20권3호
    • /
    • pp.122-128
    • /
    • 2002
  • The laser welding in the automotive industries has been used widely for the butt joint of blank sheets rather than the lap joint of automotive body panels. But as a substitute far the spot welding of automotive body panels, the so called three dimensional laser welding will be important far the body panel engineers. Specially the laser welding of body panels with a smooth weld line is applied increasingly, for example, to the side panels. So far, some criteria of the laser weld quality was suggested by in-house regulations or national standards from experiences and/or rule of thumbs. In the manufacturing places, a go or no-go criterion is adopted because of the simplicity or a lack of rational criteria. It is true specially for the selection of the process parameters, which gives the basic causes for the good quality of laser welds. In this study, the effects of joint combination, gap and welding speed on the lap joint $CO_2$ laser welding of two mild steel sheets with different thicknesses are obtained through a $2{\times}3{\times}7$ factorial experiment. The results of the weld quality are statistically analysed using analysis of variance (ANOVA) and compared between two characteristic zones, which are separated by the type of sectional shapes and the level of input energy per volume. The thickness combinations are 0.8mm/1.2mm, 1.2mm/0.8mm of mild steel sheets. The welding speed covers from the deep penetration to the partial penetration. The gap size has three levels of no-gap, 0.16m, and 0.26mm. The bead width, penetration depth and input energy per volume are measured and used as the weld quality criteria.