• 제목/요약/키워드: Partial least-squares regression (PLS)

검색결과 100건 처리시간 0.021초

부분최소자승법을 이용한 중고차 에어컨냄새 원인물질 추정 (Estimation of VOCs Affecting a Used Car Air Conditioning Smell via PLSR)

  • 유한민;이태희;성기우
    • 한국자동차공학회논문집
    • /
    • 제21권6호
    • /
    • pp.175-182
    • /
    • 2013
  • Lately, customers think highly of the emotional satisfaction and as a result, issues on odor are matters of concern. The cases are odor of interior material and air-conditioner of vehicles. In particualar, with respect to the odor of air-conditioner, customers strongly claimed defects with provocative comments : "It smells like something rotten," "It smells like a foot odor," "It stinks like a rag." Generally, it is known that mold of evaporator core in the air-conditioning system decays and this produce VOCs which causes the odor to occur. In this study, partial least squares regression model is applied to predict the strength of the odor and select of important VOCs which affect car air conditioning smell. The PLS method is basically a particular multilinear regression algorithm which can handle correlated inputs and limited data. The number of latent variable is determined by the point which is stabilized mean absolute deviations of VOCs data. Also multiple linear regression is carried out to confirm the validity of PLS method.

가시광선 및 근적외선 투과스펙트럼을 이용한 홍삼의 내부품질예측 (Internal Quality Estimation of Korean Red Ginseng Using VIS/NIR Transmittance Spectrum)

  • 손재룡;이강진;김기영;강석원;최규홍;장익주
    • Journal of Biosystems Engineering
    • /
    • 제29권4호
    • /
    • pp.335-340
    • /
    • 2004
  • This study was conducted to evaluate the internal quality of Korean red ginseng using VIS/NIR transmittance spectra. To classify the internal qualities, partial least squares(PLS) regression was conducted. The main results are as follows: To develop the PLS model, several wave bands were divided and incorporated into the model. Among the bands, the wavelength range of 550-1,020nm, excluded noise signal, showed the best evaluation results. Effect of step size on the performance of quality evaluation showed optimal at 15 steps. In order to enhance the accuracy of quality evaluation, the abnormal spectrum shape was considered first and then the PLS model was applied. Among the 150 samples, 12 samples were evaluated by the spectrum shape. In this study, to develop the optimal PLS regression model, among the 150 samples, 138 samples was used with exception of 12 samples which could evaluate the spectrum shape. The result of quality evaluation was promising as SEC and correlation coefficient were 1.09 and 0.967, respectively, and SEP and correlation coefficient were 1.04 and 0.958, respectively.

Estimation of product compositions for multicomponent distillation columns

  • Shin, Joonho;Lee, Moonyong;Park, Sunwon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 Proceedings of the Korea Automatic Control Conference, 11th (KACC); Pohang, Korea; 24-26 Oct. 1996
    • /
    • pp.295-298
    • /
    • 1996
  • In distillation column control, secondary measurements such as temperatures and flows are widely used in order to infer product composition. This paper addresses the design of static estimators using the secondary measurements for estimating the product compositions of the multicomponent distillation columns. Based on the unified framework for the estimator problems, the relationships among several typical static estimators are discussed including the effect of the measured inputs. Design guidelines for the composition estimator using PLS regression are also presented. The estimator based on the guidelines is robust to sensor noise and has a good predictive power.

  • PDF

Determination of Water Content in Skin by using a FT Near Infrared Spectrometer

  • Suh Eun-Jung;Woo Young-Ah;Kim Hyo-Jin
    • Archives of Pharmacal Research
    • /
    • 제28권4호
    • /
    • pp.458-462
    • /
    • 2005
  • The water content of skin was determined using a FT near infrared (NIR) spectrometer. NIR diffuse reflectance spectra were collected from hairless mouse, in vitro, and from human inner arm, in vivo. It was found that the variation of NIR absorbance band 1450 nm from OH vibration of water and 1940 nm from the combination involving OH stretching and OH deformation, depending on the absolute water content of separated hairless mouse skin, in vitro, using the FT NIR spectrometer. Partial least squares regression (PLSR) was applied to develop a calibration model. The PLS model showed good correlation. For practical use of the evaluation of human skin moisture, the PLS model for human skin moisture was developed in vivo on the basis of the relative water content of stratum corneum from the conventional capacitance method. The PLS model predicted human skin moisture with a standard errors of prediction (SEP) of 3.98 at 1130-1830 nm range. These studies showed the possibility of a rapid and nondestructive skin moisture measurement using FT NIR spectrometer.

FT-IR 스펙트럼 데이터의 다변량 통계분석을 이용한 곶감의 원산지 및 품종 식별 (Discrimination of Cultivars and Cultivation Origins from the Sepals of Dry Persimmon Using FT-IR Spectroscopy Combined with Multivariate Analysis)

  • 허설혜;김석원;민병환
    • 한국식품과학회지
    • /
    • 제47권1호
    • /
    • pp.20-26
    • /
    • 2015
  • 본 연구에서는 상업용 곶감의 꽃받침과 종자를 이용하여 대사체 수준에서의 원산지와 품종 식별 체계를 확립하였다. 실험에 이용된 곶감 시료는 국내산 곶감 함안수시(Hamansusi), 예천고종시(Yecheongojongsi), 산청단성시(Sancheongdanseongsi), 그리고 논산월하시(Nonsanwalhasi) 4개 품종과 국내에서 판매되고 있는 중국산 곶감 2개 종류의 꽃받침과 종자를 사용하였으며, 꽃받침과 종자 시료의 전세포 추출물로부터 FT-IR 스펙트럼 데이터를 기반으로 다변량 통계분석(PCA, PLS-DA)을 실시하였다. 이 결과 국내산 곶감 4품종과 중국산 곶감 2종류가 두 그룹으로 확연히 나뉘어지는 것을 확인할 수 있었다. 상업용 곶감의 꽃받침을 PLS regression을 실시한 결과 국내산과 중국산 곶감을 100% 예측할 수 있었다. 또한 곶감 종자를 이용하여 품종 식별한 결과 각 4개의 그룹으로 나뉘어지는 것을 확인할 수 있었으며, PLS regression을 실시한 결과 약 86%의 정확도로 품종 식별이 가능함을 알 수 있었다. FT-IR 스펙트럼 분석의 간편성과 신속성을 고려할 때, 본 연구 결과는 상업용 곶감에 대한 원산지나 품종 식별의 신속한 수단으로 활용할 수 있을 것으로 예상된다. 더 나아가 본 기술을 이용하여 다른 농산물의 원산지 또는 품종 식별 수단으로 활용이 가능할 것으로 기대된다.

정조 상태에서 백미에 대한 완전미율의 비파괴 예측 (Non-Destructive Prediction of Head Rice Ratios using NIR Spectra of Hulled Rice)

  • 권영립;조승현;이재흥;서경원;최동칠
    • 한국작물학회지
    • /
    • 제53권3호
    • /
    • pp.244-250
    • /
    • 2008
  • 도정하지 않은 정조의 81 시료로부터 스펙트럼을 수집하고, 백미 완전미도정수율 예측 희귀모델을 개발하기 위해 검량식을 작성한 결과 스펙트럼을 8 nm 간격으로 지정하고, 1차미분 방법으로 검량식을 작성한 완전미율의 결정계수는 MPLS에서 0.8353, PLS 방법에서 0.8416, PCR에서 0.5277를 나타냈다. 스펙트럼을 20 nm 간격으로 지정하고 1차미분 방법으로 검량식을 작성하였다. 완전미율의 결정계수는 MPLS에서 0.8144, PLS 방법에서 0.8354, PCR에서 0.6809를 나타냈다. 스펙트럼을 8 nm 간격으로 지정하고 2차미분 방법으로 검량식을 작성하였다.완 전미율의 결정계수는 MPLS 방법에서 0.7994, PLS에서 0.8017, PCR에서 0.4473을 나타냈다. 스펙트럼을 20 nm 간격으로 지정하고 2차미분 방법으로 검량식을 작성하였다. 완전미율의 결정계수는MPLS 방법에서 0.8004, PLS에서 0.8493, PCR에서 0.6609을 나타냈다.

PLS 기법에 의한 (X,Y) 자료의 시각화 (Visualizing (X,Y) Data by Partial Least Squares Method)

  • 허명회;이용구;이성근
    • 응용통계연구
    • /
    • 제20권2호
    • /
    • pp.345-355
    • /
    • 2007
  • PLS 회귀는 q-변량의 Y 변수에 대한 회귀에서 p-변량의 X 변수가 다중공선성의 문제를 갖는 경우에도 적용 가능한 방법이다. 특히 X 변수의 수 p가 관측개체 수 n보다 큰 경우에 적용 가능하여 계량화학(chemometrics) 분야에서 근적외선 분광기(near-infrared spectroscopy) 자료에 대한 표준적 분석 방법으로 활용되고 있다. 이 연구에서 우리는 PLS회귀의 방법론을 정리하고 이를 활용한 p개의 X 변수들과 q개의 Y 변수들의 동시 시각화를 위한 두 가지의 수량화 방법을 제안한다.

고분자 전해질 연료전지용 막가습기의 상대습도 추정을 위한 소프트센서 개발 (Soft Sensor Development for Predicting the Relative Humidity of a Membrane Humidifier for PEM Fuel Cells)

  • 한인수;신현길
    • 한국수소및신에너지학회논문집
    • /
    • 제25권5호
    • /
    • pp.491-499
    • /
    • 2014
  • It is important to accurately measure and control the relative humidity of humidified gas entering a PEM (polymer electrolyte membrane) fuel cell stack because the level of humidification strongly affects the performance and durability of the stack. Humidity measurement devices can be used to directly measure the relative humidity, but they cost much to be equipped and occupy spaces in a fuel cell system. We present soft sensors for predicting the relative humidity without actual humidity measuring devices. By combining FIR (finite impulse response) model with PLS (partial least square) and SVM (support vector machine) regression models, DPLS (dynamic PLS) and DSVM (dynamic SVM) soft sensors were developed to correctly estimate the relative humidity of humidified gases exiting a planar-type membrane humidifier. The DSVM soft sensor showed a better prediction performance than the DPLS one because it is able to capture nonlinear correlations between the relative humidity and the input data of the soft sensors. Without actual humidity sensors, the soft sensors presented in this work can be used to monitor and control the humidity in operation of PEM fuel cell systems.

Selecting Significant Wavelengths to Predict Chlorophyll Content of Grafted Cucumber Seedlings Using Hyperspectral Images

  • Jang, Sung Hyuk;Hwang, Yong Kee;Lee, Ho Jun;Lee, Jae Su;Kim, Yong Hyeon
    • 대한원격탐사학회지
    • /
    • 제34권4호
    • /
    • pp.681-692
    • /
    • 2018
  • This study was performed to select the significant wavelengths for predicting the chlorophyll content of grafted cucumber seedlings using hyperspectral images. The visible and near-infrared (VNIR) images and the short-wave infrared images of cucumber cotyledon samples were measured by two hyperspectral cameras. A correlation coefficient spectrum (CCS), a stepwise multiple linear regression (SMLR), and partial least squares (PLS) regression were used to determine significant wavelengths. Some wavelengths at 501, 505, 510, 543, 548, 619, 718, 723, and 727 nm were selected by CCS, SMLR, and PLS as significant wavelengths for estimating chlorophyll content. The results from the calibration models built by SMLR and PLS showed fair relationship between measured and predicted chlorophyll concentration. It was concluded that the hyperspectral imaging technique in the VNIR region is suggested effective for estimating the chlorophyll content of grafted cucumber leaves, non-destructively.

토마토 반사광과 투과광 스펙트럼 분석에 의한 경도 예측 성능 비교 (Comparison of Performance of Models to Predict Hardness of Tomato using Spectroscopic Data of Reflectance and Transmittance)

  • 김영태;서상룡
    • Journal of Biosystems Engineering
    • /
    • 제33권1호
    • /
    • pp.63-68
    • /
    • 2008
  • This study was carried out to find a useful method to predict hardness of tomato using optical spectrum data. Optical spectrum of reflectance and transmittance data were collected processed by 9 kind of preprocessing methods-normalizations of mean, maximum and range, SNV (standard normal variate), MSC (multiplicative scatter correction), the first derivative and second derivative of Savitzky-Golay and Norris-Gap. With the preprocessed and non-processed original spectrum data, prediction models of hardness of tomato were developed using analytical tools of PLS (partial least squares) and MLR (multiple linear regression) and tested for their validation. The test of validation resulted that the analytical tools of PLS and MLR output similar performances while the transmittance spectra showed much better result than the reflectance spectra.