• Title/Summary/Keyword: Partial insulation

Search Result 462, Processing Time 0.034 seconds

The Fundamental Study About Partial Discharge Detection With The Radiated Electromagnetic Wave Characteristics (방사전자파 특성을 이용한 부분방전 검출의 기초연구)

  • Lee, Sang-Hun;Park, Gwang-Seo;Kim, Chung-Nyeon;Lee, Hyeon-Dong;Song, Hyeon-Jik;Kim, Gi-Chae;Lee, Gwang-Sik;Lee, Dong-In
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.7
    • /
    • pp.412-417
    • /
    • 2000
  • This paper offer fundamental materials about Partial Discharge(PD) detection by electromagnetic waves. All spectrum data-usually used as grape- can be used as numbers. And then the average of background noise spectrum strength was made. Average value subtract from every data. Then average value appeared, graphed. The graph was compared with the magnitude of charge. The shape of changes is similar, and the change of electric field strength could be seen in one sight. When the magnitude of charge is over than 100[pC], antenna can detect partial discharge. So this method will be very useful to diagnosis of insulation. It the performance of the antenna used in this experiment is analyzed, good results can be obtained.

  • PDF

Effect of Ambient Temperature on Insulation Lifetime of Inverter Surge Resistant Enameled Wire Prepared with Organic/Inorganic Hybrid Nanocomposite

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.3
    • /
    • pp.163-167
    • /
    • 2016
  • Inverter surge resistant enameled wire was prepared with an organic/inorganic hybrid nanocomposite, and the effect of ambient temperature on the insulation lifetime of the enameled wire in the form of twisted pair was studied by a withstanding voltage tester. The organic polymer was Polyesterimide-polyamideimide (EI/AI) and the inorganic material was a Nano-sized silica (average particle size : 15 nm). The enamel thickness was 50 μm and the ambient temperature was 100, 150, 200, and 250, respectively. Transmission electron microscopy (TEM) observation showed that Nano-sized Silica were evenly dispersed in EI/AI. There were many air gaps in a twisted pair, therefore, when voltage was applied to the twisted pair, enamel erosion took place in the air gap area because of partial discharge accordi, ng to Paschen’s law. As ambient temperature increased, insulation lifetime decreased according to Arrhenius relationship, which was explained by the increasing mobility of polymer chains in EI or AI. And insulation breakdown voltage value at 10 kHz was 1,864.5 sec (31.1 min), which is 1.9 times higher than at 20 kHz, 981.6 sec (16.4 min).

Insulation Breakdown Characteristics of Inverter Surge Resistant Enameled Wire Prepared with Organic/Inorganic Hybrid Nanocomposite

  • Park, Jae-Jun;Shin, Seong-Sik;Lee, Jae-Young;Han, Se-Won;Kang, Dong-Pil
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.4
    • /
    • pp.190-193
    • /
    • 2015
  • Insulation breakdown characteristics of an inverter surge resistant enameled wire were investigated in a twisted pair prepared with organic/inorganic hybrid nanocomposite. Organic polymer was polyesterimide-polyamideimide (EI/AI) and inorganic material was a nano-sized silica. The enamel thickness was 50 μm and the diameters of enameled copper wires were 0.75, 1.024, and 1.09 mm, respectively. There were many air gaps in a twisted pair. Therefore, when the voltage was applied to the twisted pair, enamel erosion took place in the air gap area because of partial discharge according to Paschen’s law. The insulation lifetime of the hybrid wire (HW) was 41,750 sec, which was 515.4 times more than the 81 sec of EI/AIW. In addition, the shape parameter of HW was 2.58, which was 3.4 times higher than 0.75 of EI/AIW.

A Study on the New Evaluation Method on Insulation of Electronic Components (전자부품의 새로운 절연평가기법 연구)

  • Kil, Gyung-Suk;Snog, Jae-Yong;Moon, Seung-Bo;Cha, Myung-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.503-504
    • /
    • 2006
  • This paper describes a low-level partial discharge(PD) testing that has been accepted as a non-destructive test method on insulation performance of electronic components. A comparative PD analysis combined with the Withstand Voltage Test (WVT) specified in IEC standards is carried out on high frequency switching transformers. The analysis shows that insulation degradation of the transformers under test progresses during the WVT. To avoid insulation degradation of the specimen, PD test has to be carried out at as low voltage as possible. In this study, the PD test on the transformers is performed in ranges from 50% to 70% of the test voltage specified in the WVT by measuring apparent charges below 1 pC. From the experimental results, it is expects that the low-level PD test is applicable for electronic components as a replacement of the WVT.

  • PDF

A Comparative Study of The PD Pattern Analysis Based on PRPD and CAPD for The Diagnosis of Gas Insulated Transformer (GITr(Gas Insulated Transformer) 내부에 발생되는 PD 신호의 패턴분석을 위한 PRPD와 CAPD 적용결과 비교)

  • Jung, Seung-Yong;Koo, Ja-Yoon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.6
    • /
    • pp.308-312
    • /
    • 2006
  • Partial Discharge (PD) phenomena occurred by different nature of insulating defects has been regarded as a random process by which Phase Resolved Partial Discharge Analysis(PRPDA) has been proposed and then commercially accepted for the diagnosis of the power apparatus since more than three decades. Moreover, for the same purpose, a novel approach based on the Chaotic Analysis(CAPD) has been proposed since 2000, in which Partial Discharge(PD) phenomena is suggested to be considered as a deterministic dynamical process. In this work, for the diagnosis of Gas Insulated Transformer(GITr), four different types of specimen were fabricated as a model of the possible defects that might possibly cause its sudden failures such as turn to turn insulation, inter coil insulation, free moving particle and protrusion. For this purpose, these defects are introduced into the Gas Insulated Transformer(GITr) mock-up and experimental investigations have been carried out in order to analyze the related Partial Discharge(PD) patterns by means of both Phase Resolved Partial Discharge Analysis(PRPDA) and Chaotic Analysis(CAPD) respectively and then their comparisons are made systematically.

Design of Intelligent Insulation Degradation Sensor

  • Kim, Yi-Gon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.3
    • /
    • pp.191-193
    • /
    • 2002
  • Insulation aging diagnosis system provides early warning in regard to electrical equipment defects. Early warning is very important in that it can avoid great losses resulting from unexpected shutdown of the production line. For solving this problem, many researchers proposed a method that diagnose power plant by using partial discharge. In this paper, we design the intelligent sensor to diagnose insulation degradation state that uses a Microprocessor and Al. Proposed sensor has MCU that is used to diagnose insulation degradation and communicate with main IDD system. And we use a fuzzy model to diagnose insulation degradation.

A Study on the Insulation Performance Improvement of Induction Motors Fed by IGBT PWM Inverter (IGBT PWM 인버터 구동 유도전동기의 절연성능 향상기술 연구)

  • Hwang D.H.;Park D.Y.;Kim Y.J.;Lee Y.H.;Kim D.H.;Lee I.W.
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.335-339
    • /
    • 2001
  • The recent advancements in power electronic switching devices have enabled high frequency switching operation and have improved the performance of pulse-width modulated (PWM) inverters for driving induction motors. But, the insulation failures of stator winding have attracted much concern due to high dv/dt of IGBT PWM inverter. In this paper, the test results for evaluation on the stator winding insulation of low-voltage induction motors for IGBT PWM inverter applications are presented. The insulation characteristics are analyzed with partial discharge and dissipation factor tests. Also, insulation breakdown tests by switching pulse voltage are performed. An effective insulation technique to enhance the insulation strength is suggested from the test results.

  • PDF

Evaluation on Insulation Performance of Traction Motors for a Hybrid Vehicle by Partial Discharge Measurement (부분방전 측정에 의한 하이브리드차량 견인전동기의 절연성능평가)

  • Park, Dae-Won;Park, Chan-Yong;Choi, Jae-Sung;Kil, Gyung-Suk;Lee, Kang-Won
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.2
    • /
    • pp.249-253
    • /
    • 2009
  • This paper dealt with the insulation evaluation by a measurement of partial discharge(PD) on traction motors used in a hybrid vehicle. The PD method has been accepted as an effective and a non-destructive. technique to evaluate insulation performance of low-voltage electric and electronic devices. In this paper, the PD measurement system which was manufactured with a coupling network, a low noise amplifier, and an associated electronics is described. The PD measurement system has the frequency bandwidth of $1[MHz]{\sim}30[MHz]$ at -3 [dB] and the stable sensitivity of 19 [mV/pC] for the traction motor. From the experimental results, discharge inception voltage (DIV) and apparent charge (q) were $1,100[V_{rms}]$ and 105 [pC] for the used motor, and $1,400[V_{rms}]$ and 84 [pC] for the new one. By comparing the DIV and q, we could evaluate the insulation condition for the traction motors.

Analysis of Partial Discharge Characteristics at Cryogenic Temperature below 77K (77K 이하 극저온 상에서의 부분방전 특성 분석)

  • Lee, Sang-Hwa;Kim, Bok-Yeol;Shin, Woo-Ju;Lee, Bang-Wook;Koo, Ja-Yoon
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1562-1563
    • /
    • 2011
  • Partial discharge measurement is one of the effective diagnostic techniques to predict abnormal high voltage dielectric insulation conditions of the electric equipments. Recently partial discharge diagnostic techniques were also utilized to evaluate the cryogenic dielectric insulation of high temperature superconducting electric equipment in liquid nitrogen. Generally, liquid nitrogen at 77 K is used used as the cryogenic and dielectric media for many high temperature superconducting high voltage applications. When a quench in the superconductor occurs, bubbles are generated which can affect the dielectric properties of the liquid nitrogen. So in order to reduce the bubble formation, subcooled nitrogen was also employed for this purpose. In this work, investigation of partial discharge characteristics of subcooled liquid nitrogen were conducted in order to clarify the retardation of partial discharge initiation voltage according to the different subcooling temperature of liquid nitrogen. And also the relation of partial discharge phenomena and the activities of bubbles were analyzed. It was observed that PD inception voltages shows rather different characteristics according to the decrease of subcooling temperature and the activities of bubbles were strongly influenced by temperature of the subcooled liquid nitrogen.

  • PDF

Assessment of Insulation Condition in Gas Turbine Generator Stator Windings (가스터빈 발전기 고정자 권선의 절연상태 평가)

  • Kim, Hee-Dong;Yang, Gyu-Hyun;Ju, Young-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.8
    • /
    • pp.1423-1428
    • /
    • 2010
  • The results of off-line and on-line diagnostic tests performed on the stator winding of an air-cooled gas turbine(G/T) generator are reported in this paper. Off-line diagnostic tests included measurements of the ac current, dissipation factor(tan${\delta}$), and partial discharge(PD). Six epoxy-mica capacitors were installed in the three phases of G/T generator for performing on-line diagnostic testing with the turbine generator analyzer(TGA). The TGA showed that the normalized quantity number(NQN) and the PD magnitude($Q_m$) were high in phase A of the stator winding. Internal discharges were generated in phases B and C, and slot discharge occurred in phase A. According to the trend analyses of the NQN and $Q_m$ values available for insulation condition assessment for G/T generator stator windings, it was concluded that phases B and C were in good condition, whereas phase A has been significantly deteriorated.