• Title/Summary/Keyword: Partial electrical conductivity

Search Result 113, Processing Time 0.025 seconds

Kinetics and Oxygen Vacancy Mechanism of the Oxidation of Carbon Monoxide on Perovskite$Nd_{1-x}Sr_xCoO_{3-y}$ Solutions as a Catalyst

  • Dong Hoon Lee;Keu Hong Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.8
    • /
    • pp.616-622
    • /
    • 1994
  • The oxidation of carbon monoxide by gaseous oxygen in the presence of a powdered $Nd_{1-x}Sr_xCoO_{3-y}$ solid solution as a catalyst has been investigated in the temperature range from 150$^{\circ}$C to 300$^{\circ}$C under various CO and $O_2$ partial pressures. The site of Sr substitution, nonstoichiometry, structure, and microstructure were studied by means of powder X-ray diffraction and infrared spectroscopy. The electrical conductivity of the solid solution has been measured at 300$^{\circ}$C under various CO and $O_2$ partial pressures. The oxidation rates have been correlated with 1.5-and 1.2-order kinetics with and without a $CO_2$ trap, respectively; first-and 0.7 order with respect to CO and 0.5-order to $O_2$. For the above reaction temperature range, the activation energy is in the range from 0.25 to 0.35 eV/mol. From the infrared spectroscopic, conductivity and kinetic data, CO appears essentially to be adsorbed on the lattice oxygens of the catalyst, while $O_2$ adsorbs as ions on the oxygen vacancies formed by Sr substitution. The oxygen vacancy mechanism of the CO oxidation and the main defect of $Nd_{1-x}Sr_xCoO_{3-y}$ solid solution are supported and suggested from the agreement between IR data, conductivities, and kinetic data.

Oxygen Permeability, Electronic and ionic Conductivities and Defect Chemistry of Ceria-Zirconia-Calcia

  • Kawamura, Ken-ichi;Watanabe, Kensuke;Nigara, Yutaka;Kaimai, Atsushi;Kawada, Tatsuya;Mizusaki, Junichiro
    • The Korean Journal of Ceramics
    • /
    • v.4 no.2
    • /
    • pp.146-150
    • /
    • 1998
  • The total conductivity and oxygen permeation in (Ce1-xZrxO2)0.9(CaO)0.1 solid solutions were measure das a function of temperature and oxygen partial pressure. Empirically, σ at given x and T was expressed essentially by σ=σo2+σeo Po2-1/4, where σo2 and σeo are constant. Applying a standard defect model in which major defects are Cace", Cece' and Vo in ideal solution, we can assign σo2 as the oxide ion conductivity decreases while the electronic conductivity increases with the increase in Zr content. Using the oxide ion and electronic conductivities thus determined, the oxygen permeation flux was calculated for respective Po2 and T conditions at which the measurements were made. The calculated values were found to agree with the observed ones.

  • PDF

Synthesis and Properties of Y0.08Sr0.92Fe0.3Ti0.7O3 as Ceramic Anode for SOFC (SOFC의 세라믹 음극물질로서 Y0.08Sr0.92Fe0.3Ti0.7O3의 합성 및 물성 평가)

  • Lee, Tae-Hee;Jeon, Sang-Yun;Im, Ha-Ni;Song, Sung-Ju
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.1
    • /
    • pp.161-165
    • /
    • 2021
  • In general, SOFCs mainly use Ni-YSZ cermet, a mixture of Ni and YSZ, as an anode material, which is stable in a high-temperature reducing atmosphere. However, when SOFCs have operated at a high temperature for a long time, the structural change of Ni occurs and it results in the problem of reducing durability and efficiency. Accordingly, a development of a new anode material that can replace existing nickel and exhibits similar performance is in progress. In this study, SrTiO3, which is a perovskite-based mixed conductor and one of the candidate materials, was used. In order to increase the electrical conduction properties, Y0.08Sr0.92Fe0.3Ti0.7O3, doped with 0.08 mol of Y3+ in Sr-site and 0.03 mol of transition metal Fe3+ in Ti-site, was synthesized and its chemical diffusion coefficient and reaction constant were measured. Its electrical conductivity changes were also observed while changing the oxygen partial pressure at a constant temperature. The performance as a candidate electrode material was verified by predicting the defect area through the electrical conductivity pattern according to the oxygen partial pressure.

Change in Properties of (Ba1-xLax)Fe3+1-tFe4+tO3-y System Depending on Heat Treatment Conditions

  • Lee, Eun-Seok;Lee, Seo-Jin
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.6
    • /
    • pp.311-315
    • /
    • 2017
  • The perovskite system $(Ba^{2+}{_{1-x}}La^{3+}{_x})Fe^{3+}{_{1-t}}Fe^{4+}{_t}O_{3-y}$ (y = (1 - x --t)/2) having a composition of x = 0.0, 0.1, 0.2, and 0.3 showedean increase in $Fe^{4+}$ mole ratios with an increase in oxygen partial pressure ($N_2{\rightarrow}air{\rightarrow}O_2$), and with an increasefin s, the $Fe^{3+}$ quantity decreased and oxygen content (3-y value) increased. For each N sampls heat-treated in $N_2$ gas, a considerable weight gain, i.e.g a steadynincrease if oxygen content, was observed in the TGA data on the cooling process. The conductivity values at a constant temperature were in the order of $N_2$$O_2$; the respective log ${\sigma}$ values (${\Omega}^{-1}{\cdot}cm^{-1}$) at 323 K of the BL0 sample were -5.75 (BL0-N), -3.39 (BL0-A), and -0.53 (BL0-O). The mixed valencies of $Fe^{3+}$ and $Fe^{4+}$ ions in each sample were also confirmed by both the oxidation curve above 350 mV and the cathodic reduction curve below 200 mV from cyclic voltammetry.

Examination of the Impact of Substituting Germanium for Bismuth on the Energy Density and Electrical Conductivity of the Se60Ge40-xBix Alloy

  • Kareem Ali Jasim;Haider Sahi Hussein;Shaymaa Hashim Aneed;Ebtisam Mohammed Taqi Salman
    • Korean Journal of Materials Research
    • /
    • v.34 no.6
    • /
    • pp.267-274
    • /
    • 2024
  • In this study, four different samples of Se60Ge40-xBix chalcogenides glasses were synthesized by heating the melt for 18 h in vacuum Pyrex ampoules (under a 10-4 Torre vacuum), each with a different concentration (x = 0, 10, 15, and 20) of high purity starting materials. The results of direct current (DC) electrical conductivity measurements against a 1,000/T plot for all chalcogenide samples revealed two linear areas at medium and high temperatures, each with a different slope and with different activation energies (E1 and E2). In other words, these samples contain two electrical conduction mechanisms: a localized conduction at middle temperatures and extended conduction at high temperatures. The results showed the local and extended state parameters changed due to the effective partial substitution of germanium by bismuth. The density of extended states N(Eext) and localized states N(Eloc) as a function of bismuth concentration was used to gauge this effect. While the density of the localized states decreased from 1.6 × 1014 to 4.2 × 1012 (ev-1 cm-3) as the bismuth concentration increased from 0 to 15, the density of the extended states generally increased from 3.552 × 1021 to 5.86 × 1021 (ev-1 cm-3), indicating a reduction in the mullet's randomness. This makes these alloys more widely useful in electronic applications due to the decrease in the cost of manufacturing.

A NEW ALTERNATIVE ELLIPTIC PDE IN EIT IMAGING

  • Kim, Sungwhan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.6
    • /
    • pp.1291-1302
    • /
    • 2012
  • In this paper, we introduce a new elliptic PDE: $$\{{\nabla}{\cdot}\(\frac{|{\gamma}^{\omega}(r)|^2}{\sigma}{\nabla}v_{\omega}(r)\)=0,\;r{\in}{\Omega},\\v_{\omega}(r)=f(r),\;r{\in}{\partial}{\Omega},$$ where ${\gamma}^{\omega}={\sigma}+i{\omega}{\epsilon}$ is the admittivity distribution of the conducting material ${\Omega}$ and it is shown that the introduced elliptic PDE can replace the standard elliptic PDE with conductivity coefficient in EIT imaging. Indeed, letting $v_0$ be the solution to the standard elliptic PDE with conductivity coefficient, the solution $v_{\omega}$ is quite close to the solution $v_0$ and can show spectroscopic properties of the conducting object ${\Omega}$ unlike $v_0$. In particular, the potential $v_{\omega}$ can be used in detecting a thin low-conducting anomaly located in ${\Omega}$ since the spectroscopic change of the Neumann data of $v_{\omega}$ is inversely proportional to thickness of the thin anomaly.

Defect Structure and Electrical Conduction Mechanism of Manganese Oxide-Titanium Dioxide (산화망간-이산화티탄계의 결함구조 및 전기전도메카니즘)

  • Keu Hong Kim;Jae Shi Choi
    • Journal of the Korean Chemical Society
    • /
    • v.26 no.3
    • /
    • pp.128-134
    • /
    • 1982
  • The electrical conductivity of n-type polycrystalline MnOx-Ti$O_2$ system containing 0.40, 0.80, and 1.60 mol % of manganese oxide has been measured from 100 to 400$^{\circ}$C and 1100 to 1300$^{\circ}$C under oxygen partial pressures of$10^{-8}\;to\;10^{-1}$ atm. Plots of log conductivity vs. reciprocals of absolute temperature at constant $Po_2$'s are found to be linear with an inflection, and the activation energies obtained from the slopes appear to be an enough average 0.18eV for the extrinsic and 3.70eV for the intrinsic. The log $\sigma$ vs. log $Po_2$ are found to be linear at $Po_2$'s of $10^{-8}\;to\;10^{-1}$atm. The conductivity dependences on $Po_2$at the two temperature regions are closely approximated by $\sigma{\propto}$Po_2$-1}6$ for the extrinsic and $${\sigma}{\propto}Po_2^{-1}4}$$ for the intrinsic, respectively. The predominant defects are believed to be Vo-2e' and $Ti^3$${\cdot}$interstitial at the extrinsic and intrinsic. From the interpretations of conductivity dependences on temperature and$Po_2$ , the conduction mechanisms and possible band models are proposed.

  • PDF

Polaron Conductivity of Rutile Doped with MgO (MgO 도프된 Rutile의 Polaron 전도도)

  • Kim, Keu-Hong;Kim, Hyung-Tack;Choi, Jae-Shi
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.3
    • /
    • pp.215-224
    • /
    • 1987
  • The electrical conductuctivity measurements have been made on polycrystalline samples of various compositions in the $MgO-TiO_2$ system from 600 to $1100^{\circ}C$ under $Po_2$'s of $10^{-8}\;to\;10^{-1}$atm. Plots of log ${\sigma}$ vs. 1/T at constant $Po_2$ are found to be linear with the inflections, and the activation energies are 1.94eV for the intrinsic range and 0.48eV for the extrinsic range, respectively. The log ${\sigma}$ vs. log $Po_2$ curves are found to be linear at constant temperature, and the conductivity dependences of $Po_2$ are closely approximated by ${\sigma}\;{\alpha}\;Po_2^{-1/6}$ for the extrinsic and ${\sigma}\;{\alpha}\;Po_2^{-1/4}$ for the intrinsic range, respectively. The dominant defects in this system are believed to be oxygen vacancy for the extrinsic and $Ti^{3-}$ interstitial for the intrinsic range. The conduction mechanisms in both the extrinsic and the intrinsic ranges are proposed by the results of the electrical conductivity dependence on the oxygen partial pressure. Polaron model was suggested in the extrinsic region by the conductivity dependences of temperature and $Po_2$.

  • PDF

Study of the Electrical Conductivity of the $({\alpha}-Nb_2O_5)_{1-x^-}(PbO)_x$ Solid Solution ($({\alpha}-Nb_2O_5)_{1-x^-}(PbO)_x$ 고용체의 전기전도도)

  • Roh, Kwon-Sun;Ryu, Kwang-Sun;Jun, Jong-Ho;Lee, Sung-Ju;Yo, Chul-Hyun
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.625-629
    • /
    • 1991
  • The electrical conductivity of the Niobium Oxide-Lead Oxide systems containing 2.5, 5.0, 7.5, and 10.0 mol% of Lead Oxide has been measured in a temperature range 700${\sim}$$1100^{\circ}C$ under oxygen partial pressure of 2.0 ${\times}$ $10^{-1}$${\sim}$1.0 ${\times}$ $10^{-5}$ atm. The electrical conductivities of the system decreased with increasing PbO mol% and varied from $10^{-5}$ to $10^{-1}$ $ohm^{-1}$ $cm^{-1}$. The activation energy for conductivity was about 1.70 eV. The oxygen pressure dependence of electrical conductivity revealed that the system was a mixed conductor between ionic and electronic conductivities at high oxygen pressures and a n-type electronic conductivity with oxygen pressure dependence of -1/4 order at low oxygen pressures. The defect structure and electrical conduction mechanism of the system have been discussed with the data obtained.

  • PDF

Nonstoichiometry of the Niobium Oxide (산화니오브의 비화학양론)

  • Yo Chul Hyun;Roh Kwon Sun;Lee Sung Joo;Kim Keu Hong;Oh Eung Ju
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.329-334
    • /
    • 1991
  • The x values and electrical conductivity of the nonstoichiometric compound NbO$_x$ have been measured in a temperature range 700$^{\circ}C$ to 1100$^{\circ}C$ under oxygen partial pressure of 2 ${\times}$ 10$^{-1}$ ∼ 1 ${\times}$ 10$^{-5}$ atm. The NbO$_x$ is a stoichiometrical compound of Nb$_2$O$_5$ under oxygen partial pressure higher than 1.0 ${\times}$ 10$^{-2}$ atm at the above temperature range. The x values were found to vary between 2.48491 and 2.49900 in a temperature range 700$^{\circ}C$ to 1100$^{\circ}C$ under oxygen partial pressure lower than 1 ${\times}$ 10$^{-3}$ atm. The enthalpy of the formation for x' in NbO$_{2.50000-x'}$(${\Delta}H_f$) increased of 15.98 to 17.26 kcal/mol under the conditions. The electrical conductivity (${\sigma}$) of the oxide varied from 10$_4$ to 10$_1$ ohm$_1$cm$_1$ in the above conditions. The activation energy for the conduction was about 1.7 eV. The oxygen pressure dependency of the conductivity (or 1/n value) was about -1/4. The nonstoichiometric conduction mechanism of the oxide has been discussed with the x' values, the ${\sigma}$ values, and the thermodynamic data.

  • PDF