• Title/Summary/Keyword: Partial Ground Effect

Search Result 46, Processing Time 0.026 seconds

Effect of Earthquake characteristics on seismic progressive collapse potential in steel moment resisting frame

  • Tavakoli, Hamid R.;Hasani, Amir H.
    • Earthquakes and Structures
    • /
    • v.12 no.5
    • /
    • pp.529-541
    • /
    • 2017
  • According to the definition, progressive collapse could occur due to the initial partial failure of the structural members which by spreading to the adjacent members, could result in partial or overall collapse of the structure. Up to now, most researchers have investigated the progressive collapse due to explosion, fire or impact loads. But new research has shown that the seismic load could also be a factor for initiation of the progressive collapse. In this research, the progressive collapse capacity for the 5 and 15-story steel special moment resisting frames using push-down nonlinear static analysis, and nonlinear dynamic analysis under the gravity loads specified in the GSA Guidelines, were studied. After identifying the critical members, in order to investigate the seismic progressive collapse, the 5-story steel special moment resisting frame was analyzed by the nonlinear time history analysis under the effect of earthquakes with different characteristics. In order to account for the initial damage, one of the critical columns was weakened at the initiation of the earthquake or its Peak Ground Acceleration (PGA). The results of progressive collapse analyses showed that the potential of progressive collapse is considerably dependent upon location of the removed column and the number of stories, also the results of seismic progressive collapse showed that the dynamic response of column removal under the seismic load is completely dependent on earthquake characteristics like Arias intensity, PGA and earthquake frequency contents.

The effect of attack of chloride and sulphate on ground granulated blast furnace slag concrete

  • Ashish, Deepankar K.;Singh, Bhupinder;Verma, Surender K.
    • Advances in concrete construction
    • /
    • v.4 no.2
    • /
    • pp.107-121
    • /
    • 2016
  • This concrete is one of the most versatile construction material widely used for almost a century now. It was considered to be very durable material and required a little or no maintenance since long time. The assumption is very true, except when it is subjected to highly aggressive environments. The deterioration of concrete structures day by day due to aggressive environment is compelling engineers to assess the loss in advance so that proper preventive measure can be taken to achieve required durability to concrete structures. The compounds present in cement concrete are attacked by many salt solutions and acids. These chemicals are encountered by almost all concrete structures. The present study has been undertaken to investigate the effect of attack of chlorides and sulphates with varying severity on compressive strength of ground granulated blast furnace slag (GGBFS) concrete after immersion in salt solution for 28 days. The results indicate that the durability of GGBFS concrete increases with the increase in percentage replacement of cement by GGBFS for 20% and then gradually decreases with increases in percentage of GGBFS with cement (as in the study for 40% and 60%). Also there is increase in strength of GGBFS concrete with increase in age. Thus the durability of concrete improves when GGBFS is added as partial replacement of cement. In this study the strength of GGBFS concrete is less affected by chemicals as compared to conventional concrete when exposed to aggressive environment.

Effect of Autoclave Curing on the Microstructure of Blended Cement Mixture Incorporating Ground Dune Sand and Ground Granulated Blast Furnace Slag

  • Alawad, Omer Abdalla;Alhozaimy, Abdulrahman;Jaafar, Mohd Saleh;Aziz, Farah Nora Abdul;Al-Negheimish, Abdulaziz
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.3
    • /
    • pp.381-390
    • /
    • 2015
  • Investigating the microstructure of hardened cement mixtures with the aid of advanced technology will help the concrete industry to develop appropriate binders for durable building materials. In this paper, morphological, mineralogical and thermogravimetric analyses of autoclave-cured mixtures incorporating ground dune sand and ground granulated blast furnace slag as partial cementing materials were investigated. The microstructure analyses of hydrated products were conducted using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), differential thermal analysis (DTA), thermo-graphic analysis (TGA) and X-ray diffraction (XRD). The SEM and EDX results demonstrated the formation of thin plate-like calcium silicate hydrate plates and a compacted microstructure. The DTA and TGA analyses revealed that the calcium hydroxide generated from the hydration binder materials was consumed during the secondary pozzolanic reaction. Residual crystalline silica was observed from the XRD analysis of all of the blended mixtures, indicating the presence of excess silica. A good correlation was observed between the compressive strength of the blended mixtures and the CaO/$SiO_2$ ratio of the binder materials.

A Study on the New Partial Discharge Pattern Analysis System used by PA Map (Pulse Analysis Map) (PA Map(Pulse Analysis Map)을 이용한 새로운 부분방전 패턴인식에 관한 연구)

  • Kim, Ji-Hong;Kim, Jeung-Tae;Kim, Jin-Gi;Koo, Ja-Yoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.6
    • /
    • pp.1092-1098
    • /
    • 2007
  • Since one decade, the detection of HFPD (High frequency Partial Discharge) has been proposed as one of the effective method for the diagnosis of the power component under service in power grids. As a tool for HFPD detection, Metal Foil sensor based on the embedded technology has been commercialized for mainly power cable due to its advantages. Recently, for the on-site noise discrimination, several PA (Pulse analysis) methods have been reported and the related software, such as Neural Network and Fuzzy, have been proposed to separate the PD (Partial Discharge) signals from the noises since their wave shapes are completely different from each other. On the other hand, the relevant fundamental investigation has not yet clearly made while it is reported that the effectiveness of the current methods based on PA is dependant on the types of sensors. Moreover, regarding the identification of the vital defects introducible into the Power Cable, the direct identification of the nature of defects from the PD signals through Metal Foil coupler has not yet been realized. As a trial for solving above shortcomings, different types of software have been proposed and employed without any convincing probability of identification. In this regards, our novel algorithm 'PA Map' based on the pulse analysis is suggested to identify directly the defects inside the power cable from the HFPD signals which is output of the HFCT and metal foil sensors. This method enables to discriminate the noise and then to make the data analysis related to the PD signals. For the purpose, the HFPD detection and PA (Pulse Analysis) system have been developed and then the effect of noise discrimination has been investigated by use of the artificial defects using real scale mockup. Throughout these works, our system is proved to be capable of separating the small void discharges among the very large noises such as big air corona and ground floating discharges at the on-site as well as of identifying the concerned defects.

Characteristics of Soil Stress using Expansion Liquid Sheet (팽창약액시트를 이용한 지중응력 특성에 관한 연구)

  • Kang, Hyounhoi;Kim, Juho;Chung, Yoonseok;Park, Jeongjun
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.1
    • /
    • pp.43-50
    • /
    • 2017
  • In this study, to investigate the strength enhancement and stress transfer effect of the inflatable chemicals used in the recovery of soft ground or partial settlement, the dilatant solution was prepared and classified by measuring the density and the earth pressure in the sand ground. The inflation reinforcing agent was prepared by injecting into a separate impervious vacuum sheet by dividing into a relatively high expansion group and a low expansion group, and a cementation experiment was performed in the lower part of the homogeneously formed model ground. As a result, reinforcing effect was shown up to about 15cm above the expansion reinforcement, and the soil pressure showed a compaction tendency similar to the concentrated load of $1.150{\sim}11.298t/m^2$.

Effect of Soil Reinforcement on Shear Strength by Pennisetum alopecuroides and Miscanthus sinensis Roots on Loamy Sand at River Banks (하천제방 양질사토에 대한 수크령과 억새 뿌리의 토양전단강도 보강효과)

  • Dang, Ji-Hee;Cho, Yong-Hyeon;Lee, Chun-Seok
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.20 no.2
    • /
    • pp.79-91
    • /
    • 2017
  • This study was conducted to find out the physical properties and soil shearing strength reinforcement effect of herbaceous plants for the slope revegetation works. Two native plants(Pennisetum alopecuroides and Miscanthus sinensis) were used for this experiment, because they have excellent seed germination rates without preconditioning, and grow naturally around rivers. To identify the physical properties, the partial dry weight of plants were investigated. To identify the soil shearing strength reinforcement effect, the respective soil shearing strengths of the control soils, Pennisetum alopecuroides, Miscanthus sinensis samples were measured. Also, we did a correlation analysis to examine the relation of shearing strength to plant features. The results are summarized as follows: 1. The average dry weight of Pennisetum alopecuroides samples consists of 52.36% above ground and 47.64% at root. And in dry weight, 78.24% of it's root distributes within 10 cm in soil depth. Meanwhile the average dry weight of Miscanthus sinensis samples consists of 52.91% above ground and 47.09% at root. And in dry weight, 82.95% of it's root distributes within 10 cm in soil depth. 2. The results of correlation analysis showed that for both Pennisetum alopecuroides and Miscanthus sinensis, it could not be said that there was any correlation between shearing strength and plant characteristics, and statistically they were not meaningful. 3. In the shearing strength test with control soils, Pennisetum alopecuroides, Miscanthus sinensis as subjects, the differences in shearing strength measurement results were modest, and the order was shown as control soils < Pennisetum alopecuroides < Miscanthus sinensis, so the soil shearing strength reinforcement effect by the Pennisetum alopecuroides and the Miscanthus sinensis on loamy sand at river banks surface was confirmed.

Simulated occlusal adjustments and their effects on zirconia and antagonist artificial enamel

  • Alfrisany, Najm Mohsen;Shokati, Babak;Tam, Laura Eva;De Souza, Grace Mendonca
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.3
    • /
    • pp.162-168
    • /
    • 2019
  • PURPOSE. The aim of this study was to evaluate the effect of occlusal adjustments on the surface roughness of yttria-tetragonal zirconia polycrystal (Y-TZP) and wear of opposing artificial enamel. MATERIALS AND METHODS. Twenty-five Y-TZP slabs from each brand (Lava, 3M and Bruxzir, Glidewell Laboratories) with different surface conditions (Control polished - CPZ; Polished/ground - GRZ; Polished/ground/repolished - RPZ; Glazed - GZ; Porcelain-veneered - PVZ; n=5) were abraded (500,000 cycles, 80 N) against artificial enamel (6 mm diameter steatite). Y-TZP roughness (in ${\mu}m$) before and after chewing simulation (CS) and antagonist steatite volume loss (in $mm^3$) were evaluated using a contact surface profilometer. Y-TZP roughness was analyzed by three-way analysis of variance (ANOVA) and steatite wear by two-way ANOVA and Tukey Honest Difference (HSD) (P=.05). RESULTS. There was no effect of Y-TZP brand on surface roughness (P=.216) and steatite loss (P=.064). A significant interaction effect (P<.001) between surface condition and CS on Y-TZP roughness was observed. GZ specimens showed higher roughness after CS (before CS - $3.7{\pm}1.8{\mu}m$; after CS - $13.54{\pm}3.11{\mu}m$), with partial removal of the glaze layer. Indenters abraded against CPZ ($0.09{\pm}0.03mm^3$) were worn more than those abraded against PVZ ($0.02{\pm}0.01mm^3$) and GZ ($0.02{\pm}0.01mm^3$). Higher wear caused by direct abrasion against zirconia was confirmed by SEM. CONCLUSION. Polishing with an intraoral polishing system did not reduce the roughness of zirconia. Wear of the opposing artificial enamel was affected by the material on the surface rather than the finishing technique applied, indicating that polished zirconia is more deleterious to artificial enamel than are glazed and porcelain-veneered restorations.

Novel high-Q veritcal inductor using bondwires for MMICs (본딩와이어를 이용한 MMIC용 고품질 수직형 인덕터)

  • 이용구;윤상기;이해영
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.9
    • /
    • pp.28-35
    • /
    • 1997
  • A novel high-Q vertical jinductor for MMICs is proposed and characterized in a wide range of frequencies (DC~10 GHz) using the numerical methods such as the PeEC(partial equivalent element circuit), the FDM (finite difference method) and the MoM (method of moments). Electrical superiority of the vertical inductor to the horizontal is observed in terms of the magnetic flux linkage and the ground screening effect. The veritcal bondwire inductor is designed in consideration of the wire bonding feasibility and the optimum electrical peformance. This structure is also analyzed using the equivalent circuit and compared with the conventional spiral inductors From the calculated results, high Q-factor, inductance, and cut-off frequency are observed to be inherent characteristics of the veritcal bondwire inductor.

  • PDF

Analysis of the Magnetic Effect on the Tube Infrastructure for a Super Speed Tube Train

  • Lee, Hyung-Woo;Cho, Su-Yeon;Cho, Woo-Yeon;Lee, Ju;Kwon, Hyeok-Bin
    • International Journal of Railway
    • /
    • v.2 no.4
    • /
    • pp.170-174
    • /
    • 2009
  • Super speed tube train is introduced to increase the speed of ground transportation. The super speed tube train levitates magnetically and runs in a partial vacuum tube, which can reduce the air resistance significantly. However, the strong magnetic force enough to propel the massive train can affect to the tube infrastructure. In this paper, authors have analyzed the leakage flux patterns and induced eddy current on the tube by using 3-dimensional Finite Element Method. These effects are investigated, especially by varying the materials and diameters of the tube. From the simulation results, the aluminum tube with the diameter of 3[m] is needed to be concerned because the induced eddy current produces joule heat, raises the inside temperature of the tube, and might be able to lead to electro-chemical corrosion on the tube, consequently reduce the durability.

  • PDF

Design of UWB Antenna with Fork-type structure and circular patch (원형 패치와 포크형 구조가 결합된 UWB 안테나)

  • Ha, Yun-Sang;Kim, Gi-Rae;Choi, Young-Kyu;Yun, Joong-Han
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.10
    • /
    • pp.1837-1844
    • /
    • 2016
  • This paper proposes an antenna of the fork type structure that operates in the UWB (Ultra Wide Band) frequency band (3.1 ~ 10.6 GHz). The proposed antenna is attached a circular patch in order to obtain the UWB band characteristics to the fork-type patch antenna. The ground plane is implemented in a arc-shape configuration. The effect of various parameters of the modified fork type radiating patch and partial arc ground plane for UWB operation is investigated. The proposed antenna is made of $34.0{\times}50.0{\times}1.0mm^3$ and is fabricated on the permittivity 4.4 FR-4 substrate. The experiment results shown that the proposed antenna obtained the -10 dB impedance bandwidth 8200 MHz (2.7 ~ 10.9 GHz) covering the UWB bands. This result satisfied the characteristics of ultra-wideband and the proposed antenna will be applicable to an ultra wideband system.