• Title/Summary/Keyword: Partial Current Based CMFD

Search Result 2, Processing Time 0.014 seconds

COARSE MESH FINITE DIFFERENCE ACCELERATION OF DISCRETE ORDINATE NEUTRON TRANSPORT CALCULATION EMPLOYING DISCONTINUOUS FINITE ELEMENT METHOD

  • Lee, Dong Wook;Joo, Han Gyu
    • Nuclear Engineering and Technology
    • /
    • v.46 no.6
    • /
    • pp.783-796
    • /
    • 2014
  • The coarse mesh finite difference (CMFD) method is applied to the discontinuous finite element method based discrete ordinate calculation for source convergence acceleration. The three-dimensional (3-D) DFEM-Sn code FEDONA is developed for general geometry applications as a framework for the CMFD implementation. Detailed methods for applying the CMFD acceleration are established, such as the method to acquire the coarse mesh flux and current by combining unstructured tetrahedron elements to rectangular coarse mesh geometry, and the alternating calculation method to exchange the updated flux information between the CMFD and DFEM-Sn. The partial current based CMFD (p-CMFD) is also implemented for comparison of the acceleration performance. The modified p-CMFD method is proposed to correct the weakness of the original p-CMFD formulation. The performance of CMFD acceleration is examined first for simple two-dimensional multigroup problems to investigate the effect of the problem and coarse mesh sizes. It is shown that smaller coarse meshes are more effective in the CMFD acceleration and the modified p-CMFD has similar effectiveness as the standard CMFD. The effectiveness of CMFD acceleration is then assessed for three-dimensional benchmark problems such as the IAEA (International Atomic Energy Agency) and C5G7MOX problems. It is demonstrated that a sufficiently converged solution is obtained within 7 outer iterations which would require 175 iterations with the normal DFEM-Sn calculations for the IAEA problem. It is claimed that the CMFD accelerated DFEM-Sn method can be effectively used in the practical eigenvalue calculations involving general geometries.

One-node and two-node hybrid coarse-mesh finite difference algorithm for efficient pin-by-pin core calculation

  • Song, Seongho;Yu, Hwanyeal;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.327-339
    • /
    • 2018
  • This article presents a new global-local hybrid coarse-mesh finite difference (HCMFD) method for efficient parallel calculation of pin-by-pin heterogeneous core analysis. In the HCMFD method, the one-node coarse-mesh finite difference (CMFD) scheme is combined with a nodal expansion method (NEM)-based two-node CMFD method in a nonlinear way. In the global-local HCMFD algorithm, the global problem is a coarse-mesh eigenvalue problem, whereas the local problems are fixed source problems with boundary conditions of incoming partial current, and they can be solved in parallel. The global problem is formulated by one-node CMFD, in which two correction factors on an interface are introduced to preserve both the surface-average flux and the net current. Meanwhile, for accurate and efficient pin-wise core analysis, the local problem is solved by the conventional NEM-based two-node CMFD method. We investigated the numerical characteristics of the HCMFD method for a few benchmark problems and compared them with the conventional two-node NEM-based CMFD algorithm. In this study, the HCMFD algorithm was also parallelized with the OpenMP parallel interface, and its numerical performances were evaluated for several benchmarks.