• 제목/요약/키워드: Parkinson

검색결과 848건 처리시간 0.024초

Autophagy-enhancing and neuroprotective effects of Wonji-Gobon mixture (WGM) in a Parkinson's disease mouse model

  • Lee, Jin-Wook;Kwak, Jin-Young;Koh, Young-Mee;Ahn, Taek-Won
    • Journal of Applied Biological Chemistry
    • /
    • 제61권4호
    • /
    • pp.341-349
    • /
    • 2018
  • The aim of this study was to evaluate autophagy-enhancing and neuroprotective effects of Wonji-Gobon mixture (WGM), a traditional Chinese prescription medication, in Parkinson's disease (PD) mouse models. Our investigation found that WGM increased the expression of both Beclin1 and LC3b-II proteins as measured with western blot in the BV2 cell line; both proteins play a role in autophagy. WGM also increased the autophagy expression as measured by fluorescence-activated cell-sorting analysis in the BV2 cell line. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced PD models, WGM significantly increased the amount of dopamine in a striatum-substantia nigra suspension, produced notable results in the forced swim test, and increased serotonin as measured by high-performance liquid chromatography analysis; these results are indicative of neuroprotective effects. In summary, our findings indicate that WGM treatment has neuroprotective effects that are partially mediated by autophagy enhancement.

Botulinum Toxin A Ameliorates Neuroinflammation in the MPTP and 6-OHDA-Induced Parkinson's Disease Models

  • Ham, Hyeon Joo;Yeo, In Jun;Jeon, Seong Hee;Lim, Jun Hyung;Yoo, Sung Sik;Son, Dong Ju;Jang, Sung-Su;Lee, Haksup;Shin, Seung-Jin;Han, Sang Bae;Yun, Jae Suk;Hong, Jin Tae
    • Biomolecules & Therapeutics
    • /
    • 제30권1호
    • /
    • pp.90-97
    • /
    • 2022
  • Recently, increasing evidence suggests that neuroinflammation may be a critical factor in the development of Parkinson's disease (PD) in addition to the ratio of acetylcholine/dopamine because dopaminergic neurons are particularly vulnerable to inflammatory attack. In this study, we investigated whether botulinum neurotoxin A (BoNT-A) was effective for the treatment of PD through its anti-neuroinflammatory effects and the modulation of acetylcholine and dopamine release. We found that BoNT-A ameliorated MPTP and 6-OHDA-induced PD progression, reduced acetylcholine release, levels of IL-1β, IL-6 and TNF-α as well as GFAP expression, but enhanced dopamine release and tyrosine hydroxylase expression. These results indicated that BoNT-A had beneficial effects on MPTP or 6-OHDA-induced PD-like behavior impairments via its anti-neuroinflammation properties, recovering dopamine, and reducing acetylcholine release.

Role of post-translational modifications on the alpha-synuclein aggregation-related pathogenesis of Parkinson's disease

  • Yoo, Hajung;Lee, Jeongmin;Kim, Bokwang;Moon, Heechang;Jeong, Huisu;Lee, Kyungmi;Song, Woo Jeung;Hur, Junho K.;Oh, Yohan
    • BMB Reports
    • /
    • 제55권7호
    • /
    • pp.323-335
    • /
    • 2022
  • Together with neuronal loss, the existence of insoluble inclusions of alpha-synuclein (α-syn) in the brain is widely accepted as a hallmark of synucleinopathies including Parkinson's disease (PD), multiple system atrophy, and dementia with Lewy body. Because the α-syn aggregates are deeply involved in the pathogenesis, there have been many attempts to demonstrate the mechanism of the aggregation and its potential causative factors including post-translational modifications (PTMs). Although no concrete conclusions have been made based on the previous study results, growing evidence suggests that modifications such as phosphorylation and ubiquitination can alter α-syn characteristics to have certain effects on the aggregation process in PD; either facilitating or inhibiting fibrillization. In the present work, we reviewed studies showing the significant impacts of PTMs on α-syn aggregation. Furthermore, the PTMs modulating α-syn aggregation-induced cell death have been discussed.

Stimulant Induced Movement Disorders in Attention Deficit Hyperactivity Disorder

  • Nam, Seok-Hyun;Lim, Myung Ho;Park, Tae Won
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • 제33권2호
    • /
    • pp.27-34
    • /
    • 2022
  • Stimulants, such as amphetamine and methylphenidate, are one of the most effective treatment modalities for attention deficit hyperactivity disorder (ADHD) and may cause various movement disorders. This review discusses various movement disorders related to stimulant use in the treatment of ADHD. We reviewed the current knowledge on various movement disorders that may be related to the therapeutic use of stimulants in patients with ADHD. Recent findings suggest that the use of stimulants and the onset/aggravation of tics are more likely to be coincidental. In rare cases, stimulants may cause stereotypies, chorea, and dyskinesia, in addition to tics. Some epidemiological studies have suggested that stimulants used for the treatment of ADHD may cause Parkinson's disease (PD) after adulthood. However, there is still a lack of evidence that the use of stimulants in patients with ADHD may cause PD, and related studies are only in the early stages. As stimulants are one of the most commonly used medications in children and adolescents, close observations and studies are necessary to assess the effects of stimulants on various movement disorders, including tic disorders and Parkinson's disease.

In silico discovery and evaluation of phytochemicals binding mechanism against human catechol-O-methyltransferase as a putative bioenhancer of L-DOPA therapy in Parkinson disease

  • Rath, Surya Narayan;Jena, Lingaraja;Bhuyan, Rajabrata;Mahanandia, Nimai Charan;Patri, Manorama
    • Genomics & Informatics
    • /
    • 제19권1호
    • /
    • pp.7.1-7.13
    • /
    • 2021
  • Levodopa (L-DOPA) therapy is normally practised to treat motor pattern associated with Parkinson disease (PD). Additionally, several inhibitory drugs such as Entacapone and Opicapone are also cosupplemented to protect peripheral inactivation of exogenous L-DOPA (~80%) that occurs due to metabolic activity of the enzyme catechol-O-methyltransferase (COMT). Although, both Entacapone and Opicapone have U.S. Food and Drug Administration approval but regular use of these drugs is associated with high risk of side effects. Thus, authors have focused on in silico discovery of phytochemicals and evaluation of their effectiveness against human soluble COMT using virtual screening, molecular docking, drug-like property prediction, generation of pharmacophoric property, and molecular dynamics simulation. Overall, study proposed, nine phytochemicals (withaphysalin D, withaphysalin N, withaferin A, withacnistin, withaphysalin C, withaphysalin O, withanolide B, withasomnine, and withaphysalin F) of plant Withania somnifera have strong binding efficiency against human COMT in comparison to both of the drugs i.e., Opicapone and Entacapone, thus may be used as putative bioenhancer in L-DOPA therapy. The present study needs further experimental validation to be used as an adjuvant in PD treatment.

황납추출물이 도파민세포 보호효과 및 파킨슨병 행동장애에 미치는 영향 (Cera Flava Improves Behavioral and Dopaminergic Neuronal Activities in a Mouse Model of Parkinson's Disease)

  • 임혜선;문병철;박건혁
    • 한국환경과학회지
    • /
    • 제31권5호
    • /
    • pp.423-429
    • /
    • 2022
  • Parkinson's Disease (PD) is a chronic neurodegenerative disorder caused by the progressive loss of dopaminergic neurons, leading to decreased dopamine levels in the midbrain. Although the specific etiology of PD is not yet known, oxidative stress, inflammation, and subsequent apoptosis have been proposed to be closely related to PD pathophysiology. Cera Flava (CF) is a natural extract obtained from beehives and is isolated through the heating, compression, filtration, and purification of beehives. CF has been used in traditional medicines for its various clinical and pharmacological effects. However, its effects on neurodegenerative diseases are unknown. Therefore, we investigated the effects of CF against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD in mice and explored the underlying mechanism of action. In MPTP-induced PC12 cells, CF protected NADH dehydrogenase activity and inhibited lactate dehydrogenase. In the mouse model, CF promoted recovery from movement impairments, prevented dopamine depletion, and protected against MPTP-induced dopaminergic neuronal degradation. Moreover, CF downregulated glial and microglial activation. Taken together, our results suggest that CF improves behavioral impairments and protects against dopamine depletion in MPTP-induced toxicity by inhibiting glial and microglial activation.

Sinapic Acid Ameliorates REV-ERB α Modulated Mitochondrial Fission against MPTP-Induced Parkinson's Disease Model

  • Lee, Sang-Bin;Yang, Hyun Ok
    • Biomolecules & Therapeutics
    • /
    • 제30권5호
    • /
    • pp.409-417
    • /
    • 2022
  • Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide, and accumulating evidence indicates that mitochondrial dysfunction is associated with progressive deterioration in PD patients. Previous studies have shown that sinapic acid has a neuroprotective effect, but its mechanisms of action remain unclear. The neuroprotective effect of sinapic acid was assayed in a PD mouse model generated by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) as well as in SH-SY5Y cells. Target protein expression was detected by western blotting. Sinapic acid treatment attenuated the behavioral defects and loss of dopaminergic neurons in the PD models. Sinapic acid also improved mitochondrial function in the PD models. MPTP treatment increased the abundance of mitochondrial fission proteins such as dynamin-related protein 1 (Drp1) and phospho-Drp1 Ser616. In addition, MPTP decreased the expression of the REV-ERB α protein. These changes were attenuated by sinapic acid treatment. We used the pharmacological REV-ERB α inhibitor SR8278 to confirmation of protective effect of sinapic acid. Treatment of SR8278 with sinapic acid reversed the protein expression of phospho-Drp1 Ser616 and REV-ERB α on MPTP-treated mice. Our findings demonstrated that sinapic acid protects against MPTP-induced PD and these effects might be related to the inhibiting abnormal mitochondrial fission through REV-ERB α.

The couple of netrin-1/α-Synuclein regulates the survival of dopaminergic neurons via α-Synuclein disaggregation

  • Eun Ji Kang;Seung Min Jang;Ye Ji Lee;Ye Ji Jeong;You Jin Kim;Seong Su Kang;Eun Hee Ahn
    • BMB Reports
    • /
    • 제56권2호
    • /
    • pp.126-131
    • /
    • 2023
  • The abnormal accumulation and aggregation of the misfolded α-synuclein protein is the neuropathological hallmark of all α-synucleinopathies, including Parkinson's disease. The secreted proteins known as netrins (netrin-1, netrin-3, and netrin-4) are related to laminin and have a role in the molecular pathway for axon guidance and cell survival. Interestingly, only netrin-1 is significantly expressed in the substantia nigra (SN) of healthy adult brains and its expression inversely correlates with that of α-synuclein, which prompted us to look into the role of α-synuclein and netrin-1 molecular interaction in the future of dopaminergic neurons. Here, we showed that netrin-1 and α-synuclein directly interacted in pre-formed fibrils (PFFs) generation test, real time binding assay, and co-immunoprecipitation with neurotoxin treated cell lysates. Netrin-1 deficiency appeared to activate the dopaminergic neuronal cell death signal pathway via α-synuclein aggregation and hyperphosphorylation of α-synuclein S129. Taken together, netrin-1 can be a promising therapeutic molecule in Parkinson's disease.

Natural Products as Potential Therapeutic Strategies for Parkinson's Disease

  • Hae-Rim Cha;Mi-Ran Lee;Hyun-Jeong Cho
    • 대한의생명과학회지
    • /
    • 제29권3호
    • /
    • pp.121-129
    • /
    • 2023
  • Parkinson's disease (PD) is a progressive neurodegenerative disorder that affects millions of people worldwide. The conventional treatment model for PD have harmful side effects, such as dyskinesia, hallucinations, nausea, and fatigue, and are expensive. As a result, natural products derived from medicinal herbs, fruits, and vegetables have emerged as potential therapeutic strategies for PD. These natural products have been traditionally used to treat various diseases and have been shown to possess anti-oxidative and anti-inflammatory properties, as well as inhibitory roles in protein misfolding, mitochondrial homeostasis, neuroinflammation and other neuroprotective processes. In addition, they have fewer side effects and are generally less expensive than conventional drugs. It also discusses the limitations of current treatments and the potential of natural remedies derived from plants to treat PD in new ways or as supplements to existing treatments. The multifunctional mechanisms of medicinal plants that may be utilized to treat PD are also discussed, including the modulation of neurotransmitter systems, the enhancement of neurotrophic factors, and the inhibition of apoptosis. While more research is needed to fully understand their mechanisms of action and efficacy, natural products have the potential to provide safer and more effective treatment options for patients with PD.

로봇치료가 파킨슨병 환자의 상지 기능에 미치는 영향 (The Effect of Robot Therapy on Upper Extremity Function in a Patient With Parkinson's Disease)

  • 이인선;김종배;박지혁;박혜연
    • 재활치료과학
    • /
    • 제7권3호
    • /
    • pp.59-78
    • /
    • 2018
  • 목적 : 본 연구의 목적은 상지 로봇 치료가 파킨슨병 환자의 상지 기능에 미치는 영향을 알아보는 것이다. 연구방법 : 본 연구는 개별실험 연구방법(single subject experimental research) 중 A-B-A' 설계를 사용하였다. 3명의 파킨슨병 환자에게 총 20회기에 걸쳐 실험을 진행하였고, 로봇치료는 1회당 45분, 주5회로 시행되었다. 대상자의 상지 기능회복을 알아보기 위해 매 회기 Reo Assessment tool을 통해 상지 움직임의 효율성 지수를 측정 하여 결과 값을 분석하였고 상지 기능의 중재 전후 비교를 위하여 사전-사후 평가로 JHF, BBT, NHT를 측정하였으며 결과 분석은 시각적 그래프와 기술 통계량을 사용하였다. 결과 : 상지 로봇 치료를 적용한 뒤 측정된 상지 움직임의 효율성 지수 결과 값인 상지 움직임의 저항, 부드러움, 경로 효율성, 방향 정확성, 움직임 시작 시간, 전체 움직임 시간에 전반적인 향상을 보였고, 이를 통해 상지 로봇 치료가 파킨슨병 환자의 상지 기능에 긍정적인 영향을 미치는 것을 확인할 수 있었다. 결론 : 파킨슨 환자의 상지 기능 향상을 위한 작업치료 적용 과정에서 로봇 치료는 대안적인 방안으로 고려되어질 수 있을 것으로 예상된다.