• Title/Summary/Keyword: Parkinson's disease(PD)

Search Result 247, Processing Time 0.022 seconds

Aggregation of α-Synuclein Induced by Oxidized Catecholamines as a Potential Mechanism of Lewy Body

  • Kim, Kyung-Sik;Kang, Jung-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.8
    • /
    • pp.1255-1259
    • /
    • 2005
  • Lewy bodies (LBs) are neuronal inclusions that are closely related to Parkinson's disease (PD). The filamentous component of LB from patients with PD contains biochemically altered $\alpha$-synuclein. We have investigated the effect of the oxidized products of catecholamines on the modification of $\alpha$-synuclein. When $\alpha$-synuclein was incubated with the oxidized 3,4-dihydroxyphenylalanine (L-DOPA) or dopamine, the protein was induced to be aggregated. The oxidized catecholamine-mediated $\alpha$-synuclein aggregation was enhanced by copper ion. Radical scavengers, azide and N-acetyl cysteine significantly prevented the oxidized catecholamine-mediated $\alpha$-synuclein aggregation. The results suggest that free radical may play a role in $\alpha$-synuclein aggregation. Exposure of $\alpha$-synuclein to the oxidized products of catecholamines led to the formation of dityrosine. Antioxidant dipeptides carnosine, homocarnosine and anserine significantly protected $\alpha$-synuclein from the aggregation induced by the oxidized products of catecholamines.

Oxidative Modification of Cytochrome c by Tetrahydropapaveroline, an Isoquinoline-Derived Neurotoxin

  • Kang, Jung Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.406-410
    • /
    • 2013
  • Tetrahyropapaveroline (THP) is compound derived from dopamine metabolism and is capable of causing dopaminergic neurodegenerative disorder, such as Parkinson's disease (PD). The aim of this study was to evaluate the potential of THP to cause oxidative damage on the structure of cytochrome c (cyt c). Our data showed that THP led to protein aggregation and the formation of carbonyl compound in protein aggregates. THP also induced the release of iron from cyt c. Reactive oxygen species (ROS) scavengers and iron specific chelator inhibited the THP-mediated cyt c modification and carbonyl compound formation. The results of this study show that ROS may play a critical role in THP-induced cyt c modification and iron releasing of cyt c. When cyt c that has been exposed to THP was subsequently analyzed by amino acid analysis, lysine, histidine and methionine residues were particularly sensitive. It is suggested that oxidative damage of cyt c by THP might induce the increase of iron content in cells and subsequently led to the deleterious condition. This mechanism is associated with the deterioration of organs under neurodegenerative disorder such as PD.

Neuroprotective Effects of Some Plant Extracts Against Dopamine-induced Oxidative Stress on Neuronal Cell (Dopamine에 의해 산화적 스트레스를 받은 Neuronal Cell에 뇌 보호 효과를 가지는 수종 생약추출물의 검색)

  • Koo, Uk;Lee, Hak-Ju;Lee, Dong-Ho;Lee, Hyun-Jung;Ham, Ah-Rom;Mar, Woong-Chon
    • Korean Journal of Pharmacognosy
    • /
    • v.40 no.1
    • /
    • pp.41-45
    • /
    • 2009
  • Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzhemier's disease. Neuropathologically, PD is characterized by the selective loss of dopaminergic neurons. The neuronal toxicity of cytosolic excess dopamine (DA) has been described in many studies using several cell lines. In dopaminergic neurons, cytosolic excess DA is easily oxidized via monoamine oxidase (MAO)-B, tyrosinase or by auto-oxidation to produce neurotoxic metabolites such as DA quinone. So, in the present study, we induced cell death by treatment of DA ($600{\mu}M$) in human neuroblastoma SH-SY5Y cell which was treated samples before 24 hr, and cell viability was measured by fluorescence activated cell sorter (FACs) analysis. Of those tested, the extracts of Poria cocos (赤茯笭)(whole), Gastrodia elata (rhizomes), Eucommia ulmoides (炒)(barks), Syneilesis palmata (whole), Acorus gramineus (rhizomes), Ligustrum japonicum (leaves) showed neuroprotective effects in dose dependent manner.

PEP-1-p18 prevents neuronal cell death by inhibiting oxidative stress and Bax expression

  • Kim, Duk-Soo;Sohn, Eun-Jeong;Kim, Dae-Won;Kim, Young-Nam;Eom, Seon-Ae;Yoon, Ga-Hyeon;Cho, Sung-Woo;Lee, Sang-Hyun;Hwang, Hyun-Sook;Cho, Yoon-Shin;Park, Jin-Seu;Eum, Won-Sik;Choi, Soo-Young
    • BMB Reports
    • /
    • v.45 no.9
    • /
    • pp.532-537
    • /
    • 2012
  • P18, a member of the INK4 family of cyclin-dependent kinase inhibitors, is a tumor suppressor protein and plays a key cell survival role in a variety of human cancers. Under pathophysiological conditions, the INK4 group proteins participate in novel biological functions associated with neuronal diseases and oxidative stress. Parkinson's disease (PD) is characterized by loss of dopaminergic neurons, and oxidative stress is important in its pathogenesis. Therefore, we examined the effects of PEP-1-p18 on oxidative stress-induced SH-SY5Y cells and in a PD mouse model. The transduced PEP-1-p18 markedly inhibited 1-methyl-4-phenyl pyridinium-induced SH-SY5Y cell death by inhibiting Bax expression levels and DNA fragmentation. Additionally, PEP-1-p18 prevented dopaminergic neuronal cell death in the substantia nigra of a 1-methyl-4-phenyl-1,2,3,6,-tetrahydropyridine-induced PD mouse model. These results indicate that PEP-1-p18 may be a useful therapeutic agent against various diseases and is a potential tool for treating PD.

Effect of 6-Hydroxydopamine (6-OHDA) on the Expression of Testicular Steroidogenic Genes in Adult Rats

  • Heo, Hyun-Jin;Ahn, Ryun-Sup;Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.14 no.3
    • /
    • pp.199-205
    • /
    • 2010
  • A neurotoxin, 6-hydroxydopamine (6-OHDA) has been widely used to create animal model for Parkinson's disease (PD). The present study was undertaken to examine whether depletion of brain dopamine (DA) stores with 6-OHDA can make alteration in the activities of the testicular steroidogenesis in adult rats. Young adult male rats (3 months old) were received a single dose of 6-OHDA (200 ${\mu}g$ in 10 ${\mu}{\ell}$/animal) by intracerebroventricular (icv) injection, and sacrificed after two weeks. The mRNA levels of steroidogenesis-related enzymes were measured by qRT-PCRs. Serum testosterone levels were measured by radioimmunoassay. Single icv infusion of 6-OHDA significantly decreased the mRNA levels of CYP11A1 (control:6-OHDA group=$1:0.68{\pm}0.14$ AU, p<0.05), CYP17 (control:6-OHDA group=$1:0.72{\pm}0.13$ AU, p<0.05). There were no changes in the mRNA levels of $3{\beta}$-HSD (control:6-OHDA group=$1:0.84{\pm}0.08$ AU) and $17{\beta}$-HSD (control: 6-OHDA group=$1:0.63{\pm}0.20$ AU), though the levels tended to be decreased in the 6-OHDA treated group. Administration of 6-OHDA decreased significantly the mRNA level of StAR when compared to the level of saline-injected control animals (control:6-OHDA group=$1:0.72{\pm}0.08$ AU, p<0.05). Treatment with single dose of 6-OHDA remarkably lowered serum testosterone levels compared to the levels of control group (control:6-OHDA group=$0.72{\pm}0.24:0.13{\pm}0.03ng/m{\ell}$, p<0.05). Taken together with our previous study, the present study demonstrated that the activities of hypothalamus-pituitary-testis hormonal axis could be negatively affected by blockade of brain DA biosynthesis, and suggested the reduced reproductive potential might be resulted in the animals. More precise information on the testicular steroidogenic activities in PD patients and PD-like animals should be required prior to the generalization of the sex steroid hormone therapy to meet the highest standards for safety and efficacy.

The Genetic Variations of NOD2 Are Associated With White Blood Cell Counts

  • Jin, Hyun-Seok;Park, Sangwook
    • Biomedical Science Letters
    • /
    • v.24 no.4
    • /
    • pp.334-340
    • /
    • 2018
  • The cytoplasmic elicitor, nucleotide-binding domain and leucine-rich repeat containing domain receptors (NLRs) is well established molecules in its role in inflammatory response. Among 22 NLR receptors, NOD2 is one of the intensively studied genes of elucidating for the inflammatory bowel disease and Crohn's disease as well. Recent research have accumulated that common genetic mutations in Parkinson's disease (PD) are increasingly related to the susceptibility to Crohn's disease. In this study, with the Korean Genome and Epidemiology Study, we aimed to perform the association between NOD2 polymorphisms and blood cell counts [WBC (white blood cell) count, RBC (red blood cell) count, platelet count], which linked supposedly to cytoplasmic inflammatory responses with clinical specialty. Linear regression analyses were performed, controlling for residential area, sex, and age as covariates. As a results, 12 SNPs from NOD2 gene were significantly associated with WBC counts (Bonferroni correction P-value criteria < 0.05/23=0.00218). In this study, we could ensure an association with NOD2 gene and WBC counts. This is the first report to have relationship between SNPs of NOD2 gene and WBC counts.

Panax notoginseng inhibits LPS-induced pro-inflammatory mediators in microglia (삼칠근(三七根)의 LPS에 의해 활성화된 뇌신경교세포(腦神經膠細胞)로부터의 염증매개물질(炎症媒介物質) 생성억제효과(生成抑制效果))

  • Jung, Hyo-Won;Park, Yong-Ki
    • The Korea Journal of Herbology
    • /
    • v.21 no.4
    • /
    • pp.93-101
    • /
    • 2006
  • Objectives : Increasing evidence has linked chronic inflammation to a number of neurodegenerative disorders including Alzheimer's disease(AD), Parkinson's disease(PD) and Huntington's disease(HD) in the inflammatory process. Uncontrolled activation of microglia may directly toxic to neurons by releasing various substances such as inflammatory cytokines ($TNF-{\alpha}$, $IL-1{\beta}$ and IL-6), NO, PEG2 and superoxide. In this study, the immunomodulatory effects of the herbal extract Panax notoginseng on cultured BV2 microglial cells and primary microglia were investigated to address potential therapeutic or toxic effects. Notoginseng radix extracts extracted from the root of the plant using Methanol. Methods : Cells were stimulated with LPS and treated with notoginseng at different concentrations. Results : Notoginseng significantly decreased LPS-induced production of $TNF-{\alpha}$ and IL-6 by the cultured microglial cells in a dose-dependent manner. The activation of iNOS mRNA and secretion of nitric oxide(NO) in microglial cells were inhibited in microglial cells in a dose-dependent manner by notoginseng. Conclusion : These results indicate that notoginseng inhibits LPS-induced activation of microglial cells and demonstrates notoginseng possess anti-inflammatory and immunosuppressive properties in vitro.

  • PDF

In Vivo $^1H$ MR Spectroscopic Study on Levodopa-Treated Parkison's Disease

  • Choe, Bo-Young;Baik, Hyun-Man;Son, Byung-Chul;Kim, Moon-Chan;Kim, Euy-Neyung;Suh, Tae-Suk;Lee, Hyoung-Koo;Shinn, Kyung-Sub
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.4 no.1
    • /
    • pp.19-28
    • /
    • 2000
  • Authors evaluated alterations of observable metabolite ratios between the cerebral lesion and the contralateral region related to the clinical symptomatic side in levodopa-treated Parkinson's disease (PD) and investigated correlation between age in patients with PD and metabolite ratios of the lesion. Patients with levodopa-treated PD (n = 54) and age-matched normal controls (n = 15) underwent magnetic resonance spectroscopy (MRS) examinations using a stimulated echo acquisition mode (STEAM) pulse sequence that provided 2$\times$2$\times$2 cm3 volume of interest in the selected regions of substantia nigra (SN) and putamed-globus pallidus (PG). To evaluate dependence of metabolite ratios on age, we divided into two groups (i.e., younger and older age). We quantitatively measured N-acetylaspartate (NAA), creatine (Cr), choline-containing compounds (Cho), inositols (Ins), and the sum of glutamate (Glx) and GABA levels and obtained proton metabolite ratios relative to Cr using a Marquart algorithm. Compared with the contralateral region, a significant neuronal laterality of the NAA/Cr ratio in the lesion of SN related to the clinical symptomatic side was established (P = 0.01), but was not established in the lesion of PG (P = 0.24). Also, Cho/Cr ratio tended toward significance in the lesion of SN (P = 0.07) and was statistically significant in the lesion of PG(P = 0.01). Compared with that in the younger age group, NAA/Cr ratio in the older age was decreased in the lesion of SN (P = 0.02), while NAA/Cr ratio was not statistically significant in the lesion of PG ( P = 0.21). Significant metabolic alterations of NAA/Cr and Cho/Cr ratios might be closely related with functional changes of neuropathological process in SN and PG of levodopa treated PD and could be a valuable finding for evaluation of the PD. A trend of NAA/Cr reduction, being statistically significant in older patients, could be indicative of more pronounced neuronal damage in the SN of the progressive PD.

  • PDF

3-(Naphthalen-2-yl(propoxy)methyl)azetidine hydrochloride attenuates MPP+-induced cytotoxicity by regulating oxidative stress and mitochondrial dysfunction in SH-SY5Y cells

  • Yang, Seung-Ju;Yang, Ji Woong;Na, Jung-Min;Ha, Ji Sun;Choi, Soo Young;Cho, Sung-Woo
    • BMB Reports
    • /
    • v.51 no.11
    • /
    • pp.590-595
    • /
    • 2018
  • Parkinson's disease (PD) is a common chronic neurodegenerative disease mainly caused by the death of dopaminergic neurons. However, no complete pharmacotherapeutic approaches are currently available for PD therapies. 1-methyl-4-phenylpyridinium $(MPP^+)$-induced SH-SY5Y neurotoxicity has been broadly utilized to create cellular models and study the mechanisms and critical aspects of PD. In the present study, we examined the role of a novel azetidine derivative, 3-(naphthalen-2-yl(propoxy)methyl)azetidine hydrochloride (KHG26792), against $MPP^+$-induced neurotoxicity in SH-SY5Y cells. Treatment of KHG26792 significantly attenuated $MPP^+$-induced changes in the protein levels of Bcl-2 and Bax together with efficient suppression of $MPP^+$-induced activation of caspase-3 activity. KHG26792 also attenuated mitochondrial potential and levels of ROS, $Ca^{2+}$, and ATP in $MPP^+$-treated SH-SY5Y cells. Additionally, KHG26792 inhibited the induced production of nitric oxide and malondialdehyde. Moreover, the protective effect of KHG26792 is mediated through regulation of glutathione peroxidase and GDNF levels. Our results suggest a possibility that KHG26792 treatment significantly protects against $MPP^+$-induced neurotoxicity in SH-SY5Y cells and KHG26792 may be a valuable therapeutic agent for the treatment of PD induced by an environmental toxin.

Change of Extracellular Glutamate Level in Striatum during Deep Brain Stimulation of the Entopeduncular Nucleus in Rats

  • Lee, Hyun-ju;Sung, Jae Hoon;Hong, Jae Taek;Kim, Il Sup;Yang, Seung Ho;Cho, Chul Bum
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.2
    • /
    • pp.166-174
    • /
    • 2019
  • Objective : Globus pallidus interna (GPi) is acknowledged as an essential treatment for advanced Parkinson's disease (PD). Nonetheless, the neurotransmitter study about its results is undiscovered. The goal of this research was to examine influences of entopeduncular nucleus (EPN) stimulation, identical to human GPi, in no-lesioned (NL) rat and 6-hydroxydopamine (6-HD)-lesioned rat on glutamate change in the striatum. Methods : Extracellular glutamate level changes in striatum of NL category, NL with deep brain stimulation (DBS) category, 6-HD category, and 6-HD with DBS category were examined using microdialysis and high-pressure liquid chromatography. Tyrosine hydroxylase (TH) immunoreactivities in substantia nigra and striatum of the four categories were also analyzed. Results : Extracellular glutamate levels in the striatum of NL with DBS category and 6-HD with DBS category were significantly increased by EPN stimulation compared to those in the NL category and 6-HD category. EPN stimulation had no significant effect on the expression of TH in NL or 6-HD category. Conclusion : Clinical results of GPi DBS are not only limited to direct inhibitory outflow to thalamus. They also include extensive alteration within basal ganglia.