• Title/Summary/Keyword: Park Jungbin

Search Result 11, Processing Time 0.02 seconds

A Comparative Analysis of the New Religious Thought Generated by Indigenous Korean Religions from a Subaltern Perspective: Focusing on Choi Je-woo, Kang Il-sun, and Park Jungbin ('서발턴(subaltern)'의 관점에서 본 한국의 자생 신종교 사상 - 수운, 증산, 소태산의 비교를 중심으로 -)

  • Park, Jong-chun
    • Journal of the Daesoon Academy of Sciences
    • /
    • v.37
    • /
    • pp.141-190
    • /
    • 2021
  • In early modern Korea, the founders of three main-stream indigenous new religions, Choi Je-woo (崔濟愚), Kang Il-sun (姜一淳), and Park Jungbin (朴重彬), were all ruined yangban, who could no longer maintain the social dignity of yangban. Prior to their regular religious activities, they earned livings as rural teachers, peasants, merchants, and fortune-tellers. They were marginalized for having declined from upper-class nobles to lower-class people. Due to their subalternal status, they religiously represented the inexpressible aspirations and resentments held by various subalterns. The millennial movements of marginal religions in the late Joseon Dynasty exposed and deviated from the fetters of the established order, but they did not propose a new alternative order to replace it. Unlike these millennial movements, Choi Je-woo, Kang Il-sun, and Park Jungbin all proposed utopian visions of post-subalternal alternative religions that systematically presented and practiced new alternative worldviews characterized by the "Great Opening of the Later World (後天開闢)." The world they longed for was one wherein anti-subalternal social regulation were overthrown, the oppression of various subalterns end, and the established social order was replaced. In this article, I have argued that three main-stream indigenous Korean new religions, Donghak (Eastern Learning), the Jeungsan-inspired religious movements, and Wonbulgyo (Won Buddhism) are utopian alternative religions. I made this argument by analyzing some aspects by which they represented subalterns and offered subalterns a new religio-social status.

A Study on Assessment of Personality Test using Data Mining (데이터 마이닝을 이용한 신인성검사 판정 연구 - 복무적합도검사를 중심으로 -)

  • Park, YoungGill;In, Hoh Peter;Kim, Nunghoe;Lee, Jungbin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.1373-1376
    • /
    • 2012
  • 복무적합도 검사는 정신질환이나 사고가능성이 있는 병사를 감별하고, 입대 후 적응문제로 조기 전역할 수 있는 집단을 예측하는 신인성검사 중 하나로, 현재 군에서 징병 및 입영단계에 실시하는 인성검사이다. 이는 전체 검사대상자를 상대로 정신과적 문제 식별을 위한 개별면담이 불가능하기 때문에 위 검사를 통해 대상자를 효율적으로 선별하기 위함이다. 본 연구는 데이터 마이닝을 통해 복무적합도 검사의 판정을 예측 할 수 있을지 확인하고자 하였다. 이를 위해 데이터 마이닝의 기법 중 회귀분석의 로지스틱 회귀분석 기법이 복무적합도검사 판정에 우수한 성능을 보임을 확인하였고, 로지스틱 회귀분석의 추정된 회귀계수를 이용하여 만든 반응확률에 대한 예측 모형식은 높은 정분류율을 보였고 평가 결과 통계적으로 의미가 있음을 증명하였다. 따라서 본 연구 결과를 활용하면 소수의 문항으로 복무적합도 검사 이전의 선별용 검사 개발이나 자가 진단용 검사 개발로 활용이 가능 할 것으로 기대한다.

Influence of Milling Conditions on the Microstructural Characteristics and Mechanical Properties of Non-equiatomic High Entropy Alloy (밀링 조건이 고엔트로피 합금의 미세조직 및 기계적 특성에 미치는 영향)

  • Seo, Namhyuk;Jeon, Junhyub;Kim, Gwanghoon;Park, Jungbin;Son, Seung Bae;Lee, Seok-Jae
    • Journal of Powder Materials
    • /
    • v.28 no.2
    • /
    • pp.103-109
    • /
    • 2021
  • High-entropy alloys have excellent mechanical properties under extreme environments, rendering them promising candidates for next-generation structural materials. It is desirable to develop non-equiatomic high-entropy alloys that do not require many expensive or heavy elements, contrary to the requirements of typical high-entropy alloys. In this study, a non-equiatomic high-entropy alloy powder Fe49.5Mn30Co10Cr10C0.5 (at.%) is prepared by high energy ball milling and fabricated by spark plasma sintering. By combining different ball milling times and ball-to-powder ratios, we attempt to find a proper mechanical alloying condition to achieve improved mechanical properties. The milled powder and sintered specimens are examined using X-ray diffraction to investigate the progress of mechanical alloying and microstructural changes. A miniature tensile specimen after sintering is used to investigate the mechanical properties. Furthermore, quantitative analysis of the microstructure is performed using electron backscatter diffraction.

Austenite Stability and Mechanical Properties of Nanocrystalline FeNiCrMoMnSiC Alloy Fabricated by Spark Plasma Sintering (방전플라즈마소결로 제조된 나노결정 FeNiCrMoMnSiC 합금의 오스테나이트 안정성과 기계적 특성)

  • Park, Jungbin;Jeon, Junhyub;Seo, Namhyuk;Kim, Gwanghun;Son, Seung Bae;Lee, Seok-Jae
    • Journal of Powder Materials
    • /
    • v.28 no.4
    • /
    • pp.336-341
    • /
    • 2021
  • In this study, a nanocrystalline FeNiCrMoMnSiC alloy was fabricated, and its austenite stability, microstructure, and mechanical properties were investigated. A sintered FeNiCrMoMnSiC alloy sample with nanosized crystal was obtained by high-energy ball milling and spark plasma sintering. The sintering behavior was investigated by measuring the displacement according to the temperature of the sintered body. Through microstructural analysis, it was confirmed that a compact sintered body with few pores was produced, and cementite was formed. The stability of the austenite phase in the sintered samples was evaluated by X-ray diffraction analysis and electron backscatter diffraction. Results revealed a measured value of 51.6% and that the alloy had seven times more austenite stability than AISI 4340 wrought steel. The hardness of the sintered alloy was 60.4 HRC, which was up to 2.4 times higher than that of wrought steel.

Improvement of Mechanical Properties of Nanocrystalline FeCrC Alloy via Strain-Induced Martensitic Transformation (소성유기마르텐사이트 변태에 의한 나노결정 FeCrC 소결합금의 기계적 강도 향상)

  • Kim, Gwanghun;Jeon, Junhyub;Seo, Namhyuk;Park, Jungbin;Son, Seung Bae;Lee, Seok-Jae
    • Journal of Powder Materials
    • /
    • v.28 no.3
    • /
    • pp.246-252
    • /
    • 2021
  • The effect of sintering conditions on the austenite stability and strain-induced martensitic transformation of nanocrystalline FeCrC alloy is investigated. Nanocrystalline FeCrC alloys are successfully fabricated by spark plasma sintering with an extremely short densification time to obtain the theoretical density value and prevent grain growth. The nanocrystallite size in the sintered alloys contributes to increased austenite stability. The phase fraction of the FeCrC sintered alloy before and after deformation according to the sintering holding time is measured using X-ray diffraction and electron backscatter diffraction analysis. During compressive deformation, the volume fraction of strain-induced martensite resulting from austenite decomposition is increased. The transformation kinetics of the strain-induced martensite is evaluated using an empirical equation considering the austenite stability factor. The hardness of the S0W and S10W samples increase to 62.4-67.5 and 58.9-63.4 HRC before and after deformation. The hardness results confirmed that the mechanical properties are improved owing to the effects of grain refinement and strain-induced martensitic transformation in the nanocrystalline FeCrC alloy.

Effect of Sintering Condition on Tensile Strength of Fe-based Non-equiatomic High Entropy Alloy (철계 비동일분율 고엔트로피 합금의 인장 강도에 미치는 소결 조건 영향)

  • Seo, Namhyuk;Jeon, Junhyub;Kim, Gwanghun;Park, Jungbin;Son, Seung Bae;Lee, Seok-Jae
    • Journal of Powder Materials
    • /
    • v.28 no.3
    • /
    • pp.221-226
    • /
    • 2021
  • We fabricate the non-equiatomic high-entropy alloy (NE-HEA) Fe49.5Mn30Co10Cr10C0.5 (at.%) using spark plasma sintering under various sintering conditions. Each elemental pure powder is milled by high-energy ball milling to prepare NE-HEA powder. The microstructure and mechanical properties of the sintered samples are investigated using various methods. We use the X-ray diffraction (XRD) method to investigate the microstructural characteristics. Quantitative phase analysis is performed by direct comparison of the XRD results. A tensile test is used to compare the mechanical properties of small samples. Next, electron backscatter diffraction analysis is performed to analyze the phase fraction, and the results are compared to those of XRD analysis. By combining different sintering durations and temperature conditions, we attempt to identify suitable spark plasma sintering conditions that yield mechanical properties comparable with previously reported values. The samples sintered at 900 and 1000℃ with no holding time have a tensile strength of over 1000 MPa.

Gradient Microstructure and Mechanical Properties of Fe-6%Mn Alloy by Different Sized Powder Stacking (다른 크기의 분말 적층을 통해 얻은 Fe-6%Mn합금의 경사 미세조직과 기계적 특성)

  • Seo, Namhyuk;Lee, Junho;Shin, Woocheol;Jeon, Junhyub;Park, Jungbin;Son, Seung Bae;Jung, Jae-Gil;Lee, Seok-Jae
    • Journal of Powder Materials
    • /
    • v.29 no.5
    • /
    • pp.382-389
    • /
    • 2022
  • A typical trade-off relationship exists between strength and elongation in face-centered cubic metals. Studies have recently been conducted to enhance strength without ductility reduction through surface-treatment-based ultrasonic nanocrystalline surface modification (UNSM), which creates a gradient microstructure in which grains become smaller from the inside to the surface. The transformation-induced plasticity effect in Fe-Mn alloys results in excellent strength and ductility due to their high work-hardening rate. This rate is achieved through strain-induced martensitic transformation when an alloy is plastically deformed. In this study, Fe-6%Mn powders with different sizes were prepared by high-energy ball milling and sintered through spark plasma sintering to produce Fe-6%Mn samples. A gradient microstructure was obtained by stacking the different-sized powders to achieve similar effects as those derived from UNSM. A compressive test was performed to investigate the mechanical properties, including the yielding behavior. The deformed microstructure was observed through electron backscatter diffraction to determine the effects of gradient plastic deformation.

Benefit of Using Early Contrast-Enhanced 2D T2-Weighted Fluid-Attenuated Inversion Recovery Image to Detect Leptomeningeal Metastasis in Lung-Cancer Staging

  • Kim, Han Joon;Lee, Jungbin;Lee, A Leum;Lee, Jae-Wook;Kim, Chan-Kyu;Kim, Jung Youn;Park, Sung-Tae;Chang, Kee-Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.26 no.1
    • /
    • pp.32-42
    • /
    • 2022
  • Purpose: To evaluate the clinical benefit of 2D contrast-enhanced T2 fluid-attenuated inversion recovery (CE-T2 FLAIR) image for detecting leptomeningeal metastasis (LM) in the brain metastasis work-up for lung cancer. Materials and Methods: From June 2017 to July 2019, we collected all consecutive patients with lung cancer who underwent brain magnetic resonance image (MRI), including contrast-enhanced 3D fast spin echo T1 black-blood image (CE-T1WI) and CE-T2 FLAIR; we recruited clinico-radiologically suspected LM cases. Two independent readers analyzed the images for LM in three sessions: CE-T1WI, CE-T2 FLAIR, and their combination. Results: We recruited 526 patients with suspected lung cancer who underwent brain MRI; of these, we excluded 77 (insufficient image protocol, unclear pathology, different contrast media, poor image quality). Of the 449 patients, 34 were clinico-radiologically suspected to have LM; among them, 23 were diagnosed with true LM. The calculated detection performance of CE-T1WI, CE-T2 FLAIR, and combined analysis obtained from the 34 suspected LM were highest in the combined analysis (AUC: 0.80, 0.82, and 0.89, respectively). The inter-observer agreement was also the highest in the combined analysis (0.68, 0.72, and 0.86, respectively). In quantitative analyses, CNR of CE-T2 FLAIR was significantly higher than that of CE-T1WI (Wilcoxon signed rank test, P < 0.05). Conclusion: Adding CE-T2 FLAIR might provide better detection for LM in the brain-metastasis screening for lung cancer.

Effect of Multiple Tempering on Microstructure and Mechanical Properties of AISI 4340 Steel (반복 템퍼링이 AISI 4340 강의 미세조직과 기계적 특성에 미치는 영향)

  • Jungbin Park;Junhyub Jeon;Juheon Lee;Seung Bae Son;Seok-Jae Lee;Jae-Gil Jung
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.1
    • /
    • pp.7-14
    • /
    • 2023
  • We investigated the effect of multiple tempering on the microstructure and mechanical properties of AISI 4340 steel. The austenitized and quenched AISI 4340 steels were tempered at 550, 600, and 650℃ for 1, 2, and 4 h by single-tempering (ST). The multiple tempering was conducted for 4 h by double-tempering (DT, 2 h + 2 h), and quadruple-tempering (QT, 1 h + 1 h + 1 h + 1 h). As tempering temperature increases, yield strength and ultimate tensile strength decrease and elongation increases due to recovery and recrystallization of martensite and coarsening of carbides. At 550℃, as the number of tempering cycles increases, the yield strength and tensile strength decrease at the expense of fracture elongation. At 600 and 650℃, the yield strength and tensile strength increase with increasing the number of tempering cycles while fracture elongation maintains similar values. The multiple tempering at the same tempering time of 4 h improves the modulus of toughness at all tempering temperatures, which is presumed to be due to the change in carbide precipitation behavior by multiple tempering.

Anti-ulcer effects of HT074 on HCl/EtOH induced gastric injury (염산/에탄올로 유도된 위손상 동물모델에서 HT074의 항궤양 효과)

  • Kim, Young-Sik;Park, HyoJin;Song, Jungbin;Lee, Donghun;Kim, Hocheol
    • The Korea Journal of Herbology
    • /
    • v.33 no.4
    • /
    • pp.9-18
    • /
    • 2018
  • Objectives : This study aimed to investigate the anti-ulcer effect of an standardized herbal extracts mixture of Inulae Flos and Paeoniae Radix (HT074) on acidified ethanol induced gastric injury and its potential mechanisms. Methods : Antioxidant activities of HT074 and its constituents were measured by DPPH (2,2-Diphenyl-1-picrylhydrazyl) and ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging capacity. After the oral administration of HT074 at doses of 100, 300 mg/kg twice per day for 14 days, Gastric lesions were induced by oral administration of acidified ethanol in Sprague Dawley rats. Oxidative stress markers, such as super oxide dismutase (SOD) activity, concentrations of catalase (CAT) and glutathione (GSH) were measured in gastric mucosal tissues. Additionally, the expression of human mucin gene, Mucin 5AC (MUC5AC) mRNA in gastric mucosal tissues was measured. Results : HT074 showed dose dependent radical scavenging activities against DPPH and ABTS radicals. Oral administration of HT074 300 mg/kg for 14 consecutive days significantly decreased gastric lesions and histological damages induced by HCl/EtOH in rats. HT074 treatment significantly increased the activity of SOD (300 mg/kg) and concentration of GSH (100 and 300 mg/kg), however catalase concentration was not significantly increased. MUC5AC mRNA expression was significantly increased by HT074 100, 300 mg/kg treatment. Conclusions : HT074 protects the gastric mucosa from oxidative stress caused by acidified ethanol by increasing the activity of SOD, concentration of GSH and mucin biosynthesis. These findings suggest that HT074 could be an effective candidate for prevention and treatment of gastritis and gastric ulcer.