• Title/Summary/Keyword: Paris' law

Search Result 86, Processing Time 0.021 seconds

A new Bayesian approach to derive Paris' law parameters from S-N curve data

  • Prabhu, Sreehari Ramachandra;Lee, Young-Joo;Park, Yeun Chul
    • Structural Engineering and Mechanics
    • /
    • v.69 no.4
    • /
    • pp.361-369
    • /
    • 2019
  • The determination of Paris' law parameters based on crack growth experiments is an important procedure of fatigue life assessment. However, it is a challenging task because it involves various sources of uncertainty. This paper proposes a novel probabilistic method, termed the S-N Paris law (SNPL) method, to quantify the uncertainties underlying the Paris' law parameters, by finding the best estimates of their statistical parameters from the S-N curve data using a Bayesian approach. Through a series of steps, the SNPL method determines the statistical parameters (e.g., mean and standard deviation) of the Paris' law parameters that will maximize the likelihood of observing the given S-N data. Because the SNPL method is based on a Bayesian approach, the prior statistical parameters can be updated when additional S-N test data are available. Thus, information on the Paris' law parameters can be obtained with greater reliability. The proposed method is tested by applying it to S-N curves of 40H steel and 20G steel, and the corresponding analysis results are in good agreement with the experimental observations.

Finite Element Simulation of Fatigue Crack Growth: Determination of Exponent m in Paris Law (피로균열성장의 유한요소 시뮬레이션: Paris 법칙의 지수 m의 결정)

  • Chu, Seok-Jae;Liu, Cong-Hao
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.7
    • /
    • pp.713-721
    • /
    • 2012
  • The finite element simulations of fatigue crack growth are carried out. Using only the mechanical properties usually obtained from the tensile test as input data, we attempted to predict the fatigue crack growth behavior. The critical crack opening displacement is determined by monitoring the change in displacements at the node close to the crack tip. Crack growth is simulated by debonding the crack tip node. The exponent in the Paris law was determined and compared to the published exponent. Plotting with respect to the effective stress intensity factor range yielded more consistent results.

Stable and Unstable Crack Growth in Chromium Pre-alloyed Steel

  • Gerosa, Riccardo;Rivolta, Barbara;Tavasci, Adriano;Silva, Giuseppe;Bergmark, Anders
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.138-139
    • /
    • 2006
  • Sintered steels are materials characterized by residual porosity, whose dimension and morphology strongly affect the fatigue crack growth behaviour of the material. Prismatic specimens were pressed at $7.0\;g/cm^3$ from Astaloy CrM powder and sintered varying the sintering temperature and the cooling rate. Optical observations allowed to evaluate the dimensions and the morphology of the porosity and the microstructural characteristics. Fatigue tests were performed to investigate the threshold zone and to calculate the Paris law. Moreover $K_{Ic}$ tests were performed to complete the investigation. Both on fatigue and $K_{Ic}$ samples a fractographic analysis was carried out to investigate the crack path and the fracture surface features. The results show that the Paris law crack growth exponent is around 6.0 for $1120^{\circ}C$ sintered and around 4.7 for $1250^{\circ}C$ sintered materials. The same dependence to process parameters is not found for $K_{Ith}$.

  • PDF

Identifiability of Ludwik's law parameters depending on the sample geometry via inverse identification procedure

  • Zaplatic, Andrija;Tomicevic, Zvonimir;Cakmak, Damjan;Hild, Francois
    • Coupled systems mechanics
    • /
    • v.11 no.2
    • /
    • pp.133-149
    • /
    • 2022
  • The accurate prediction of elastoplasticity under prescribed workloads is essential in the optimization of engineering structures. Mechanical experiments are carried out with the goal of obtaining reliable sets of material parameters for a chosen constitutive law via inverse identification. In this work, two sample geometries made of high strength steel plates were evaluated to determine the optimal configuration for the identification of Ludwik's nonlinear isotropic hardening law. Finite element model updating(FEMU) was used to calibrate the material parameters. FEMU computes the parameter changes based on the Hessian matrix, and the sensitivity fields that report changes of computed fields with respect to material parameter changes. A sensitivity analysis was performed to determine the influence of the sample geometry on parameter identifiability. It was concluded that the sample with thinned gauge region with a large curvature radius provided more reliable material parameters.

Microcracking of Motor Case with Fiberite 934/T300 Laminates under fatigue Loads (피로하중을 받는 Fiberite 934/T300 복합재료로 만들어진 연소관의 미세균열 연구)

  • 김형원;김성은
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.1 no.1
    • /
    • pp.82-88
    • /
    • 1997
  • The goal is to assess the effect of fatigue loading on mechanical properties of Fiberite 934/T300 laminates of pressure vessel using the recent variational mechanics analysis. This analysis has been useful in providing fracture mechanics interpretation of matrix microcracking in cross-ply laminates. This paper describes using the new energy release rate analysis for a fracture mechanics based interpretation of microcrack formation during fatigue loading. The master plot by modified Paris-law gives a complete characterization of a material system's resistance to microcrack formation.

  • PDF

The Behavior of Fatigue Crack Propagation between Holes in Panel (판재 내의 구멍 사이를 통과하는 피로크랙 전파 거동)

  • Cho, Jae-Ung;Lee, Ok-Seop;Kim, Sang-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.7 no.2
    • /
    • pp.39-46
    • /
    • 1990
  • In this study, the mechanical behavious of a center crack which propagates between two holes in a panel are investigated. It is confirmed experimentally and analytically that a center crack stops and a small crack initiates from holes and propagates to fracture because of the compressive stress arising along the path of the fatigue crack propagation. Futhermore, it is noted that regardless of the configuration of the crack and the structure, Paris' law can be applied to the fatigue crack propagation.

  • PDF

An Analysis of Crack Growth Rate Due to Variation of Fatigue Crack Growth Resistance (피로균열전파저항의 변동성에 의한 균열전파율의 해석)

  • Kim, Seon-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.7 s.166
    • /
    • pp.1139-1146
    • /
    • 1999
  • Reliability analysis of structures based on fracture mechanics requires knowledge on statistical characteristics of the parameter C and m in the fatigue crack growth law, $da/dN=C({\Delta}K)^m$. The purpose of the present study is to investigate if it is possible to predict fatigue crack growth rate by only the fluctuation of the parameter C. In this study, Paris-Erdogan law is adopted, where the author treat the parameter C as random and m as constant. The fluctuation of crack growth rate is assumed only due to the parameter C. The growth resistance coefficient of material to fatigue crack growth (Z=1/C) was treated as a spatial stochastic process, which varies randomly on the crack path. The theoretical crack growth rates at various stress intensity factor range are discussed. Constant ${\Delta}K$ fatigue crack growth tests were performed on the structural steel, SM45C. The experimental data were analyzed to determine the autocorrelation function and Weibull distributions of the fatigue crack growth resistance. And also, the effect of the parameter m of Paris' law due to variation of fatigue crack growth resistance was discussed.

Revising the Korean Arbitration Act From a Civil Law Jurisdiction Perspective: The Example of the French Arbitration Reform

  • Ahdab, Jalal El
    • Journal of Arbitration Studies
    • /
    • v.24 no.3
    • /
    • pp.125-169
    • /
    • 2014
  • In France, arbitration, both domestic and international, has recently been subjected to a major reform. This article discusses the content of the 2011 reform and its aftermath, while putting into perspective the current arbitration act in South Korea, an arbitration-friendly jurisdiction that contemplates reforming its own law. The two legal systems are characterized by their concern for efficiency and rationalization of the arbitration proceedings, through the codification of essential principles previously established by case law and through the promotion of the independence of this ADR vis-$\grave{a}$-vis state courts. The efficiency consideration is strengthened at every stage of the proceedings: from the arbitration agreement often considered valid and rarely challenged, through the proceedings for annulment, recognition and enforcement of the award, up to the judicial assistance of the French supporting judge towards the actual arbitral proceedings. Finally, new concerns are emerging: the increase of transparency and the arbitrability of disputes in some uncertain fields of law.

  • PDF

Remaining life prediction of concrete structural components accounting for tension softening and size effects under fatigue loading

  • Murthy, A. Rama Chandra;Palani, G.S.;Iyer, Nagesh R.
    • Structural Engineering and Mechanics
    • /
    • v.32 no.3
    • /
    • pp.459-475
    • /
    • 2009
  • This paper presents analytical methodologies for remaining life prediction of plain concrete structural components considering tension softening and size effects. Non-linear fracture mechanics principles (NLFM) have been used for crack growth analysis and remaining life prediction. Various tension softening models such as linear, bi-linear, tri-linear, exponential and power curve have been presented with appropriate expressions. Size effect has been accounted for by modifying the Paris law, leading to a size adjusted Paris law, which gives crack length increment per cycle as a power function of the amplitude of a size adjusted stress intensity factor (SIF). Details of tension softening effects and size effect in the computation of SIF and remaining life prediction have been presented. Numerical studies have been conducted on three point bending concrete beams under constant amplitude loading. The predicted remaining life values with the combination of tension softening & size effects are in close agreement with the corresponding experimental values available in the literature for all the tension softening models.

A Study on the Fatigue Life Prediction of Al-2024 with Corrosion (부식을 고려한 항공기재료의 부식피로수명예측 연구)

  • Kim, Wie-Dae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.1
    • /
    • pp.46-51
    • /
    • 2007
  • In this study, test results for fatigue crack propagation of Al-2024-T3511 are presented considering corrosion effects, and fatigue lifes are compared for the cases of corrosion and non-corrosion. Higher corrosion environments show lower fatigue life and faster crack growth. To predict the corrosion fatigue life, a corrosion factor concept is newly introduced and applied in Paris' law. The predicted results show good agreement with experimental data and this corrosion fatigue model can be successfully used for the prediction of fatigue life of aluminum structure with corrosion effects.