• Title/Summary/Keyword: Pareto 해

Search Result 47, Processing Time 0.026 seconds

Optimal LAN Design Using a Pareto Stratum-Niche Cubicle Genetic Algorithm (PS-NC GA를 이용한 최적 LAN 설계)

  • Choi, Kang-Hee;Jung, Kyoung-Hee
    • Journal of the Korea Computer Industry Society
    • /
    • v.6 no.3
    • /
    • pp.539-550
    • /
    • 2005
  • The spanning tree, which is being used the most widely in indoor wiring network, is chosen for the network topology of the optimal LAN design. To apply a spanning tree to GA, the concept of $Pr\ddot{u}fer$ numbers is used. $Pr\ddot{u}fer$ numbers can express he spanning tree in an efficient and brief way, and also can properly represent the characteristics of spanning trees. This paper uses Pareto Stratum-Niche Cubicle(PS-NC) GA by complementing the defect of the same priority allowance in non-dominated solutions of pareto genetic algorithm(PGA). By applying the PS-NC GA to the LAN design areas, the optimal LAN topology design in terms of minimizing both message delay time and connection-cost could be accomplished in a relatively short time. Numerical analysis has been done for a hypothetical data set. The results show that the proposed algorithm could provide better or good solutions for the multi-objective LAN design problem in a fairly short time.

  • PDF

Effective Coordination Method of Multi-Agent Based on Fuzzy Decision Making (퍼지 의사결정에 기반한 멀티에이전트의 효율적인 조정방안)

  • Ryu, Kyung-Hyun;Chung, Hwan-Mook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.1
    • /
    • pp.66-71
    • /
    • 2007
  • To adapt environment changing high speed and improve rapidly response ability for variation of environment and reduce delay time of decision making inlet agents, the derivation of user's preference and alternative are required. In this paper, we propose an efficient coordination method of multi-agents based on fuzzy decision making with the solution proposed by agents in the view of Pareto optimality. Our method generates the optimal alternative by using weighted value. We compute importance of attributes of winner agent, then can obtain the priorities lot attributes. The result of our method is analyzed that of Yager's method.

A Simulation-based Optimization Approach for the Selection of Design Factors (설계 변수 선택을 위한 시뮬레이션 기반 최적화)

  • Um, In-Sup;Cheon, Hyeon-Jae;Lee, Hong-Chul
    • Journal of the Korea Society for Simulation
    • /
    • v.16 no.2
    • /
    • pp.45-54
    • /
    • 2007
  • In this article, we propose a different modeling approach, which aims at the simulation optimization so as to meet the design specification. Generally, Multi objective optimization problem is formulated by dependent factors as objective functions and independent factors as constraints. However, this paper presents the critical(dependent) factors as objective function and design(independent) factors as constraints for the selection of design factors directly. The objective function is normalized far the generalization of design factors while the constraints are composed of the simulation-based regression metamodels fer the critical factors and design factor's domain. Then the effective and fast solution procedure based on the pareto optimal solution set is proposed. This paper provides a comprehensive framework for the system design using the simulation and metamodels. Therefore, the method developed for this research can be adopted for other enhancements in different but comparable situations.

  • PDF

Optimization of Multi-objective Function based on The Game Theory and Co-Evolutionary Algorithm (게임 이론과 공진화 알고리즘에 기반한 다목적 함수의 최적화)

  • Sim, Kwee-Bo;Kim, Ji-Yoon;Lee, Dong-Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.6
    • /
    • pp.491-496
    • /
    • 2002
  • Multi-objective Optimization Problems(MOPs) are occur more frequently than generally thought when we try to solve engineering problems. In the real world, the majority cases of optimization problems are the problems composed of several competitive objective functions. In this paper, we introduce the definition of MOPs and several approaches to solve these problems. In the introduction, established optimization algorithms based on the concept of Pareto optimal solution are introduced. And contrary these algorithms, we introduce theoretical backgrounds of Nash Genetic Algorithm(Nash GA) and Evolutionary Stable Strategy(ESS), which is the basis of Co-evolutionary algorithm proposed in this paper. In the next chapter, we introduce the definitions of MOPs and Pareto optimal solution. And the architecture of Nash GA and Co-evolutionary algorithm for solving MOPs are following. Finally from the experimental results we confirm that two algorithms based on Evolutionary Game Theory(EGT) which are Nash GA and Co-evolutionary algorithm can search optimal solutions of MOPs.

Assessment of Rainfall-Sediment Yield-Runoff Prediction Uncertainty Using a Multi-objective Optimization Method (다중최적화기법을 이용한 강우-유사-유출 예측 불확실성 평가)

  • Lee, Gi-Ha;Yu, Wan-Sik;Jung, Kwan-Sue;Cho, Bok-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.12
    • /
    • pp.1011-1027
    • /
    • 2010
  • In hydrologic modeling, prediction uncertainty generally stems from various uncertainty sources associated with model structure, data, and parameters, etc. This study aims to assess the parameter uncertainty effect on hydrologic prediction results. For this objective, a distributed rainfall-sediment yield-runoff model, which consists of rainfall-runoff module for simulation of surface and subsurface flows and sediment yield module based on unit stream power theory, was applied to the mesoscale mountainous area (Cheoncheon catchment; 289.9 $km^2$). For parameter uncertainty evaluation, the model was calibrated by a multi-objective optimization algorithm (MOSCEM) with two different objective functions (RMSE and HMLE) and Pareto optimal solutions of each case were then estimated. In Case I, the rainfall-runoff module was calibrated to investigate the effect of parameter uncertainty on hydrograph reproduction whereas in Case II, sediment yield module was calibrated to show the propagation of parameter uncertainty into sedigraph estimation. Additionally, in Case III, all parameters of both modules were simultaneously calibrated in order to take account of prediction uncertainty in rainfall-sediment yield-runoff modeling. The results showed that hydrograph prediction uncertainty of Case I was observed over the low-flow periods while the sedigraph of high-flow periods was sensitive to uncertainty of the sediment yield module parameters in Case II. In Case III, prediction uncertainty ranges of both hydrograph and sedigraph were larger than the other cases. Furthermore, prediction uncertainty in terms of spatial distribution of erosion and deposition drastically varied with the applied model parameters for all cases.

Development of a Daily Reservoir Operating Model for Nakdong-River Basin (낙동강수계 일별 저수지군 최적 운영 모형 개발)

  • Lee YongDae;Cho Namwoong;Kim Jaehee;Park Myung-ky;Kim Sheung-Kown
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.284-288
    • /
    • 2005
  • 본 연구에서는 낙동강수계 일별 운영 계획 수립을 위한 저수지군 최적 연계운영 모형(CoMOM, Coordinated Multiple Reservoir Operating Model)을 개발하였다. 이를 위하여 동적 네트워크 흐름 모형을 기반으로 한 다중목적 혼합 정수 목표계획 모형 (MOMIGP, Multiple Objective Mixed Integer Goal-Programming)을 수립하였다. 이 모형은 월말 목표 수위 및 운영 제약 등을 목표 계획법으로 구성하였으며, 일별 운영의 특성을 고려하여 하도추적의 효과를 반영하였고, 선형화된 발전함수를 이용하여 발전량을 최대화 하도록 한 후 정확한 발전량을 사후에 산정하였다. 이와 같이 수립된 수학 모형을 GUI를 비롯한 프로그램(CoMOM)으로 개발하여 사용자가 편리하게 수행 할 수 있도록 하였다. 이 프로그램은 의사결정자의 운영 목표와 의도를 효과적으로 반영할 수 있도록 대화형 목표 계획법을 구현하였으며, 상충되는 여러 목적에 대하여 가능한 파래토(Pareto) 최적해를 제시하고 의사결정자가 가장 선호하는 해를 선택하도록 대화형 다중목적 계획법 CBITP(Convex hull of individual maxima Based Interactive Tchebycheff Procedure)를 활용하여 구현하였다. 한편 객체지항적 프로그램 기법을 활용하여 수계 내의 노드(저수지, 수요지, 발전소 등)를 추가 하거나 삭제 할 수 있도록 하여, 다른 수계로의 확장이 용이하도록 개발하였다.

  • PDF

Static Allocation of C++ Objects to CORBA-based Distributed Systems (C++ 객체의 CORBA 기반 분산 시스템으로의 정적 할당)

  • 최승훈
    • Journal of Internet Computing and Services
    • /
    • v.1 no.2
    • /
    • pp.69-88
    • /
    • 2000
  • One of the most important factors on the performance of the distributed systems is the effective distribution of the software components, There have been a lot of researches on partitioning and allocating the task-based system, while the studies on the allocating the objects of the object-oriented system into the distributed object environments are very little relatively. In this paper. we defines the graph model for partitioning the existing C++ application and allocating the C++ objects into CORBA-base distributed system, In addition, we propose a distributed object allocation algorithm based on this graph model. The performance of distributed systems is determined by the concurrency between objects, the load balance among the processors and the communication cost on the networks. To search for the solutions optimizing the above three factors simultaneously, the object allocation algorithm of this paper is based on the Niched Pareto Genetic Algorithm (NPGA). We performed the experiment on the typical C++ application and CORBA system to prove the effectiveness of our graph model and our object allocation algorithm.

  • PDF

Optimization for the Design Parameters of Electric Locomotive Overhaul Maintenance Facility (전기 기관차 중수선 시설의 설계 변수 최적화)

  • Um, In-Sup;Cheon, Hyeon-Jae;Lee, Hong-Chul
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.2
    • /
    • pp.222-228
    • /
    • 2010
  • In this paper, we propose a optimization approach for the Electric Locomotive Overhaul Maintenance Facility (ELOMF), which aims at the simulation optimization so as to meet the design specification. In simulation design, we consider the critical path and sensitivity analysis of the critical (dependent) factors and the design (independent) parameters for the parameter selection and reduction of the metamodel. Therefore, we construct the multi-objective non-linear programming. The objective function is normalized for the generalization of design parameter while the constraints are composed of the simulation-based regression metamodel for the critical factors and design factor's domain. Then the effective solution procedure based on the pareto optimal solution set is proposed. This approach provides a comprehensive approach for the optimization of Train Overhaul Maintenance Facility(TOMF)'s design parameters using the simulation and metamoels.

Optimization of Stacking Strategies Considering Yard Occupancy Rate in an Automated Container Terminal (장치장 점유율을 고려한 자동화 컨테이너 터미널의 장치 위치 결정 전략 최적화)

  • Sohn, Min-Je;Park, Tae-Jin;Ryu, Kwang-Ryel
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.11
    • /
    • pp.1106-1110
    • /
    • 2010
  • This paper proposes a method of optimizing a stacking strategy for an automated container terminal using multi-objective evolutionary algorithms (MOEAs). Since the yard productivities of seaside and landside are conflicting objectives to be optimized, it is impossible to maximize them simultaneously. Therefore, we derive a Pareto optimal set instead of a single best solution using an MOEA. Preliminary experiments showed that the population is frequently stuck in local optima because of the difficulty of the given problem depending on the yard occupancy rate. To cope with this problem, we propose another method of simultaneously optimizing two problems with different difficulties so that diverse solutions can be preserved in the population. Experimental results showed the proposed method can derive better stacking policies than the compared method solving a single problem given the same computational costs.

Prediction of Stream Flow on Probability Distributed Model using Multi-objective Function (다목적함수를 이용한 PDM 모형의 유량 분석)

  • Ahn, Sang-Eok;Lee, Hyo-Sang;Jeon, Min-Woo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.5
    • /
    • pp.93-102
    • /
    • 2009
  • A prediction of streamflow based on multi-objective function is presented to check the performance of Probability Distributed Model(PDM) in Miho stream basin, Chungcheongbuk-do, Korea. PDM is a lumped conceptual rainfall runoff model which has been widely used for flood prevention activities in UK Environmental Agency. The Monte Carlo Analysis Toolkit(MCAT) is a numerical analysis tools based on population sampling, which allows evaluation of performance, identifiability, regional sensitivity and etc. PDM is calibrated for five model parameters by using MCAT. The results show that the performance of model parameters(cmax and k(q)) indicates high identifiability and the others obtain equifinality. In addition, the multi-objective function is applied to PDM for seeking suitable model parameters. The solution of the multi-objective function consists of the Pareto solution accounting to various trade-offs between the different objective functions considering properties of hydrograph. The result indicated the performance of model and simulated hydrograph are acceptable in terms on Nash Sutcliffe Effciency*(=0.035), FSB(=0.161), and FDBH(=0.809) to calibration periods, validation periods as well.