• Title/Summary/Keyword: Parent gene

Search Result 164, Processing Time 0.033 seconds

Extent of linkage disequilibrium and effective population size of the Landrace population in Korea

  • Shin, Donghyun;Kim, Sung-Hoon;Park, Joowan;Lee, Hak-Kyo;Song, Ki-Duk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.8
    • /
    • pp.1078-1087
    • /
    • 2018
  • Objective: The genetic diversity of the Landrace population, a representative maternal pig breed in Korea, is important for genetic improvement. Previously, the effective population size (Ne) has been used to infer the genetic diversity of a population of interest. In this study, we aimed to use single nucleotide polymorphism (SNP) data to characterize linkage disequilibrium (LD) and the Ne of the Korean Landrace population. Methods: We genotyped 1,128 Landrace individuals from three representative Korean major grand-grand-parent (GGP) farms using the Illumina PorcineSNP60 version2 BeadChip, which covers >61,565 SNPs located across all autosomes and mitochondrial and sex chromosomes. We estimated the expected LD and current Ne, as well as ancestral Ne. Results: In the Korean Landrace population, the mean LD ($r^2$) of 3.698 million SNP pairs was $0.135{\pm}0.204$. The mean $r^2$ decreased slowly with as the distance between SNPs increased, and remained constant beyond 3 Mb. According to the $r^2$ calculations, 8,085 of 3.698 million SNP pairs were in complete LD. The current Ne (${\pm}$standard deviation) of the Korean Landrace population is approximately 92.27 [79.46; 105.07] individuals. The ancestral Ne exhibited a slow and steady decline from 186.61 to 92.27 over the past 100 generations. Additionally, we observed more a rapid Ne decrease from the past 20 to 10 generations ago, compared with other intervals. Conclusion: We have presented an overview of LD and the current and ancestral Ne values in the Korean Landrace population. The mean LD and current Ne for the Korean Landrace population confirm the genetic diversity and reflect the history of this pig population in Korea.

Characterization of Newly Bred Cordyceps militaris Strains for Higher Production of Cordycepin through HPLC and URP-PCR Analysis

  • Lee, Hyun-Hee;Kang, Naru;Park, Inmyoung;Park, Jungwook;Kim, Inyoung;Kim, Jieun;Kim, Namgyu;Lee, Jae-Yun;Seo, Young-Su
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.7
    • /
    • pp.1223-1232
    • /
    • 2017
  • Cordyceps militaris, a member of Ascomycota, a mushroom referred to as caterpillar Dong-chung-ha-cho, is commercially valuable because of its high content of bioactive substances, including cordycepin, and its potential for artificial cultivation. Cordycepin (3'-deoxyadenosine) is highly associated with the pharmacological effects of C. militaris. C. militaris is heterothallic in that two mating-type loci, idiomorph MAT1-1 and MAT1-2, exist discretely in two different spores. In this study, nine C. militaris strains were mated with each other to prepare newly bred strains that produced a larger amount of cordycepin than the parent strains. Nine strains of C. militaris were identified by comparing the internal transcribed spacer sequence, and a total of 12 single spores were isolated from the nine strains of C. militaris. After the MAT idiomorph was confirmed by PCR, 36 mating combinations were performed with six single spores with MAT1-1 and the others with MAT1-2. Eight mating combinations were successfully mated, producing stroma with perithecia. Cordycepin content analysis of all strains by high-performance liquid chromatography revealed that the KASP4-bred strain produced the maximum cordycepin among all strains, regardless of the medium and stroma parts. Finally, universal rice primer-PCR was performed to demonstrate that the bred strains were genetically different from the parental strains and new C. militaris strains. These results may be related to the recombination of genes during mating. The newly produced strains can be used to meet the industrial demand for cordycepin. In addition, breeding through mating suggests the possibility of producing numerous cordycepin-producing C. militaris strains.

Genetic Analysis by Diallel Crosses in F1 Generation of Silkworm, Bombyx mori (이면교잡에 의한 가잠 F1세대의 몇 가지 양적 형질에 관한 유전 분석)

  • 정원복;장권열
    • Journal of Sericultural and Entomological Science
    • /
    • v.28 no.1
    • /
    • pp.24-29
    • /
    • 1986
  • A set of 21 crosses of F1 generation by diallel crosses from seven parent silkworm, Bombyx mori L. were used as materials to estimate genetic parameters such as gene action and combining ability. Experiments were conducted in 1985, and three characters, which are weight of cocoon, weight of cocoon layer and ration of cocoon layer, were observed. The data were analyzed for each character by Jinks', Hayman's and Griffing's methods. The result obtained are summarized as follows : 1. In Vr-Wr graphical analyses, weight of cocoon was found to be inherited in over dominance, and weight of cocoon layer and ration of cocoon layer were observed as partial dominance. 2. Estimate of additive component of variance(D) was greater than those of dominance component of variance(H) for weight of cocoon layer and ratio of cocoon layer, and positive values of F were observed for all characters. 3. Mean squares of general combining ability were higher than those of specific combining ability. 4. Variety Jam 107 was expressed as the highest GCA effects for three characters, and high SCA effects for all characters were observed in combinations of 113 $\times$Jung 14 and Jam 107 $\times$Jung 14.

  • PDF

Development and Evaluation of QTL-NILs for Grain Weight from an Interspecific Cross in Rice

  • Yun, Yeo-Tae;Kim, Dong-Min;Park, In-Kyu;Chung, Chong-Tae;Seong, Yeaul-Kyu;Ahn, Sang-Nag
    • Korean Journal of Breeding Science
    • /
    • v.42 no.4
    • /
    • pp.357-364
    • /
    • 2010
  • In a previous study, we mapped 12 QTLs for 1,000 grain weight (TGW) in the 172 $BC_2F_2$ lines derived from a cross between Oryza sativa ssp. Japonica cv. Hwaseongbyeo and O. rufipogon. These QTLs explained 5.4 - 11.4% of the phenotypic variance for TGW. Marker-aided selection combined with backcrosses was employed to develop QTL-NILs for each QTL. $BC_2F_2$ lines with each target QTL were backcrossed to Hwaseongbyeo twice and then allowed to self to produce $BC_4F_5$ populations. SSR markers linked to TGW were employed to select QTL-NILs with the respective target QTL. Six QTL-NILs with the recurrent parent, Hwaseongbyeo were evaluated for nine traits for three years from 2007 and 2009. Differences were observed between each of the 6 QTL-NILs and Hwaseongbyeo in TGW. In addition to TGW, these QTL-NILs displayed differences in other agronomic traits possibly indicating a tight linkage of genes controlling these traits. The direction of the QTL for TGW in 6 QTL-NILs was consistent as in the $BC_2F_2$ lines from the same cross. Difference in TGW between each of the QTL-NILs and Hwaseongbyeo was associated with the difference in one or two grain shape traits; grain length, grain width, and grain thickness. SSR markers linked to the QTL for TGW will facilitate selection of the grain shape character in a breeding program to diversify grain shape and provide the foundation for map-based gene isolation. Also, the QTL-NILs developed in this report and the progenies from crosses between the QTL-NILs will be useful in clarifying epistatic interactions among QTLs for TGW.

Genomics Approach to Identify the Cause of the Missing Omega-5 Gliadin Protein in O-Free Wheat

  • Lee, Yun Gyeong;Choi, Sang Chul;Kang, Yuna;Kang, Chon-Sik;Kim, Changsoo
    • Plant Breeding and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.413-425
    • /
    • 2018
  • A previous work developed and identified a new omega-5 gliadin deficient wheat line named O-free by crossing Keumkang and Olgeuru, which is nutritionally quite meaningful in that omega-5 gliadin is one of the known wheat allergens. To verify the characteristics of the O-free, we performed RNA sequencing (RNAseq) analysis of the O-free and the two parent lines (Keumkang and Olgeuru). The results of the similarity analysis with the ESTs for gliadins and glutenins showed that the O-free ESTs had no similarity with the omega-5 gliadin sequences but had similarity to other gliadins and glutenins. Furthermore, mapping results between the raw RNAseq data from the O-free and the omega-5 gliadin sequence showed a clear deletion of the N-terminal sequences which are an important signature of omega-5 gliadin. We also designed specific PCR primers that could identify omega-5 gliadin in the genomic DNA. The results showed that no omega-5 gliadin fragments were detected in the O-free. According to these results, we confirmed that the deficiency of omega-5 gliadin in the O-free is not caused by post-transcriptional or post-translational regulations such as epigenetic phenomena but by a simple deletion in the chromosome. Furthermore, we showed that the low-molecular weight glutenin subunit (LMW-GS) gene in the O-free had a single nucleotide polymorphism (SNP) causing a premature stop codon, resulting in a truncated polypeptide. We expect that the O-free line may serve as an excellent source of wheat that could prevail in the hypo-allergen wheat market, which has recently gained interest world-wide.

Extent of linkage disequilibrium and effective population size of Korean Yorkshire swine

  • Shin, Donghyun;Won, Kyeong-Hye;Kim, Sung-Hoon;Kim, Yong-Min
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.12
    • /
    • pp.1843-1851
    • /
    • 2018
  • Objective: We aimed to characterize linkage disequilibrium (LD) and effective population size ($N_e$) in a Korean Yorkshire population using genomic data from thousands of individuals. Methods: We genotyped 2,470 Yorkshire individuals from four major Grand-Grand-Parent farms in Korea using the Illumina PorcineSNP60 version2 BeadChip, which covers >61,565 single nucleotide polymorphisms (SNPs) located across all chromosomes and mitochondria. We estimated the expected LD and inferred current $N_e$ as well as ancestral $N_e$. Results: We identified 61,565 SNP from autosomes, mitochondria, and sex chromosomes and characterized the LD of the Yorkshire population, which was relatively high between closely linked markers (>0.55 at 50 kb) and declined with increasing genetic distance. The current $N_e$ of this Korean Yorkshire population was 122.87 (106.90; 138.84), while the historical $N_e$ of Yorkshire pigs suggests that the ancestor $N_e$ has decreased by 99.6% over the last 10,000 generations. Conclusion: To maintain genetic diversity of a domesticated animal population, we must carefully consider appropriate breed management methods to avoid inbreeding. Although attenuated selection can affect short-term genetic gain, it is essential for maintaining the long-term genetic variability of the Korean Yorkshire population. Continuous and long-term monitoring would also be needed to maintain the pig population to avoid an unintended reduction of $N_e$. The best way to preserve a sustainable population is to maintain a sufficient $N_e$.

Identification of a Novel Bakanae Disease Resistance QTL in Zenith Cultivar Rice (Oryza sativa L.)

  • Sais-Beul Lee;Jun-Hyun Cho;Nkulu Rolly Kabange;Sumin Jo;Ji-Yoon Lee;Yeongho Kwon;Ju-Won Kang;Dongjin Shin;Jong-Hee Lee;You-Cheon Song;Jong-Min Ko;Dong-Soo Park
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.12a
    • /
    • pp.64-64
    • /
    • 2020
  • Bakanae disease, caused by several Fusarium species, imposes serious limitations to the productivity of rice across the globe. The incidence of this disease has been shown to increase, particularly in major rice-growing countries. Thus, the use of high resistant rice cultivars offers a comparative advantage, such as being cost effective, and could be preferred to the use of fungicides. In this research, we used a tropical japonica rice variety, Zenith, a bakanae disease resistant line selected as donor parent. A RIL population (F8:9) composed of 180 lines generated from a cross between Ilpum and Zenith was used. In primary mapping, a QTL was detected on the short arm of chromosome 1, covering about 3.5 Mb region flanked by RM1331 and RM3530 markers. The resistance QTL, qBK1Z, explained about 30.93% of the total phenotype variation (PVE, logarith of the odds (LOD) of 13.43). Location of qBK1Z was further narrowed down to 730 kb through fine mapping using additional RM markers, including those previously reported and developed by Sid markers. Furthermore, there is a growing need to improving resistance to bakanae disease and promoting breeding efficiency using MAS from qBK1Z region. The new QTL, qBK1Z, developed by the current study is expected to be used as foundation to promoting breeding efficiency with an enhanced resistance against bakanae disease. Moreover, this study provides useful information for developing resistant rice lines carrying single or multiple major QTLs using gene pyramiding approach and marker-assisted breeding.

  • PDF

RNAi-Mediated Gene Silencing of Trcot1 Induces a Hyperbranching Phenotype in Trichoderma reesei

  • Gao, Fei;Li, Mengzhu;Liu, Weiquan;Bai, Yingguo;Tao, Tu;Wang, Yuan;Zhang, Jie;Luo, Huiying;Yao, Bin;Huang, Huoqing;Su, Xiaoyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.206-215
    • /
    • 2020
  • Trichoderma reesei is the major filamentous fungus used to produce cellulase and there is huge interest in promoting its ability to produce higher titers of cellulase. Among the many factors affecting cellulase production in T. reesei, the mycelial phenotype is important but seldom studied. Herein, a close homolog of the Neurospora crassa COT1 kinase was discovered in T. reesei and designated TrCOT1, which is of 83.3% amino acid sequence identity. Functional disruption of Trcot1 in T. reesei by RNAi-mediated gene silencing resulted in retarded sporulation on potato dextrose agar and dwarfed colonies on minimal medium agar plates containing glucose, xylan, lactose, xylose, or glycerol as the sole carbon source. The representative mutant strain, SUS2/Trcot1i, also displayed reduced mycelia accumulation but hyperbranching in the MM glucose liquid medium, with hyphal growth unit length values decreased to 73.0 ㎛/tip compared to 239.8 ㎛/tip for the parent strain SUS2. The hyperbranching phenotype led to slightly but significantly increased cellulase secretion from 24 to 72 h in a batch culture. However, the cellulase production per unit of mycelial biomass was much more profoundly improved from 24 to 96 h.

Culture Conditions for Glucoamylase Production and Ethanol Productivity of Heterologous Transformant of Saccharomyces cerevisiae by Glucoamylase Gene of Saccharomyces diastaticus (Transformant의 Glucoamylase 생성조건과 Ethanol 발효성)

  • Kim, Young-Ho;Jung-Hwn Seu
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.6
    • /
    • pp.494-498
    • /
    • 1988
  • The optimum conditions for glucoamylase production, and ethanol productivity of the transformant TSD-14 were investigated as compared with the parental strains. The properties of TSD-14 were comparatively similar to the donor S. diastaticus IFO 1046 as regards the conditions of glucoamylase production and ethanol productivity. The soluble starch was the most effective carbon source for the glucoamylase production. While inorganic nitrogen sources did not prompt cell growth and enzyme production, the organic nitrogen sources generally enhanced both cell growth and glucoamylase production. The metal salts such as FeSO$_4$, MgSO$_4$, MnCl$_2$, and NiSO$_4$were favorable to the enzyme production. And the optium temperature and initial pH for glucoamylase production were 3$0^{\circ}C$ and 5. The transformant TSD-14 produced 8.3%(v/v) ethanol from 15% sucrose medium, 4.8%(v/v) ethanol from 15% soluble starch medium, and 7.5%(v/v) ethanol from 15% liquefied potato starch medium. The corresponding fermentation efficiency were 84% , 45% and 70%, respectively.

  • PDF

Genetic Analysis of Days to Flowering in Korean Hot Pepper (한국 건고추 개화소요일수의 유전 분석)

  • Soh, Jae-Woo;Lee, Yong-Beom;Nam, Sang-Yong
    • Horticultural Science & Technology
    • /
    • v.31 no.1
    • /
    • pp.89-94
    • /
    • 2013
  • This study was carried out to calculate the genic values of days for flowering in commercial breeding lines of Korean hot pepper (Capsicum annuum L.). Two breeding lines of pepper '#2132' ($P_1$) early-flowering, and '#1308' ($P_2$) medium-late flowering, and their $F_1$ and $F_2$ generations were used in this study. By using partitioning method (Thseng and Hosokawa, 1971, 1972), it was possible to estimate, from the $F_2$ generations, the number of effective factor pairs differentiating the two parents. It was found out that the two parents were differentiated by two effective factor pairs, A:a and B:b. In the breeding lines used, the inheritance of days to flowering showed that the $F_1$ flowered a little earlier than the earlier flowering parent through the effect of over-dominance. However, $F_2$ flowered earlier or later than both parents through transgressive segregation. Conclusively, the magnitude of genic effects of A-a gene in flowering days was -13.81 days, and B-b gene was -6.73 days. The interaction between the two non-allelic factors using partitioning method was -5.26 days.