• Title/Summary/Keyword: Parasite infection.

검색결과 450건 처리시간 0.024초

PCR Identification and Phylogenetic Analysis of Trichomonas gallinae from Domestic Pigeons in Guangzhou, China

  • Qiu, Shen-Ben;Lv, Meng-Na;He, Xi;Weng, Ya-Biao;Zou, Shang-Shu;Wang, Xin-Qiu;Lin, Rui-Qing
    • Parasites, Hosts and Diseases
    • /
    • 제55권3호
    • /
    • pp.333-336
    • /
    • 2017
  • Avian trichomoniasis caused by Trichomonas gallinae is a serious protozoan disease worldwide. The domestic pigeon (Columba livia domestica) is the main host for T. gallinae and plays an important role in the spread of the disease. Based on the internal transcribed spacers of nuclear ribosomal DNA of this parasite, a pair of primers (TgF2/TgR2) was designed and used to develop a PCR assay for the diagnosis of T. gallinae infection in domestic pigeons. This approach allowed the identification of T. gallinae, and no amplicons were produced when using DNA from other common avian pathogens. The minimum amount of DNA detectable by the specific PCR assay developed in this study was 15 pg. Clinical samples from Guangzhou, China, were examined using this PCR assay and a standard microscopy method, and their molecular characteristics were determined by phylogenetic analysis. All of the T. gallinae-positive samples detected by microscopic examination were also detected as positive by the PCR assay. Most of the samples identified as negative by microscopic examination were detected as T. gallinae positive by the PCR assay and were confirmed by sequencing. The positive samples of T. gallinae collected from Guangzhou, China, were identified as T. gallinae genotype B by sequencing and phylogenetic analyses, providing relevant data for studying the ecology and population genetic structures of trichomonads and for the prevention and control of the diseases they cause.

Artyfechinostomum malayanum: Metacercariae Encysted in Pila sp. Snails Purchased from Phnom Penh, Cambodia

  • Sohn, Woon-Mok;Yong, Tai-Soon;Eom, Keeseon S.;Sinuon, Muth;Jeoung, Hoo-Gn;Chai, Jong-Yil
    • Parasites, Hosts and Diseases
    • /
    • 제55권3호
    • /
    • pp.341-345
    • /
    • 2017
  • The metacercariae of Artyfechinostomum malayanum (Leiper, 1911) Mendheim, 1943 were discovered in Pila sp. snails purchased from a market in Phnom Penh, Cambodia. They were isolated from the snails using the artificial digestion technique and were orally fed to 2 hamsters, 1 rat, and 2 mice to obtain the adult flukes. The metacercariae were round, $145-165{\mu}m$ in diameter, having a cyst wall of $6-10{\mu}m$ in thickness, a head collar and collar spines, and characteristic features of excretory granules. Adult flukes were recovered in the small intestines of the animals at days 14 and 32 post infection and were morphologically observed using a light microscope and a scanning electron microscope. They were plump or elongated, ventrally curved, $6.0-8.1{\times}1.6-2.0mm$ in size, and characterized by the head collar bearing 43 collar spines, including 5 end group ones on each side, a long cirrus sac extending beyond the posterior margin of the ventral sucker, a submedian ovary, and 2 deeply lobed testes. Eggs in uteri were operculate, ovoid to ellipsoid, and $120-135{\times}68-75{\mu}m$ in size. In scanning electron microscopy, the head collar was prominent with collar spines looking like horns. Scale-like tegumental spines were densely distributed on the ventral surface between the head collar and ventral sucker. Sensory papillae were distributed mainly on the tegument around suckers. By this study, it has been first confirmed that the life cycle of A. malayanum exists in Cambodia.

조류 콕시듐증의 백신개발에 대한 최근의 진보 (Recent Progress in Development of Vaccines against Avian Coccidiosis)

  • Lillehoj, Hyun S.
    • 한국가금학회지
    • /
    • 제26권3호
    • /
    • pp.149-170
    • /
    • 1999
  • Protozoa of the genus Eimeria are the etiologic agents of avian coccidiosis, the most economically important Parasitic disease for the poultry industry. Coccidia multiply in intestinal epithelial cells of a wide range of hosts, including livestock in addition to poultry. Chemotherapy is extensively used to control coccidiosis. However, development of drug resistance by Eimeria parasites, the intensive cost and labor involved in the identification of new anticoccidial compounds and public awareness of drug residues in foods warrant alternative methods to prevent coccidiocic in the fast growing poultry industry. For these reasons, there is a great interest in developing vaccines against avian coccidiosis. Live Eimeria vaccines confer protective immunity, however a significant disadvantage of using these types of vaccines is their pathogenicity. Live parasites with attenuated pathogenicity also usually produce immunity but may revert back to a pathogenic form and may be contaminated with other pathogenic organisms. Killed Eimeria vaccines are safer but, unlike live attenuated vaccines, are not able to generate cytotoxic T lymphocyte responses. Recombinant vaccines are biochemically purified proteins produced by genetic engineering that consist of particular epitopes or metabolites of Eimeria. Unlike live attenuated organisms, recombinant vaccines do not possess as much risk and generally are able to induce both humoral and cell mediated immunity. DNA vaccines consist of genes encoding immunogenic proteins of pathogens that are directly administered into the host in a manner that the gene is expressed and the resulting protein generates a protective immune response. Although all of these different types of vaccines have been applied to coccidiosis, this disease continues to cause substantial morbidity and mortality in the poultry industry. Future development of an effective vaccine against coccidiosis will depend on further investigation of protective immunity to Eimeria infection and identification of important immundgenic parasite molecules.

  • PDF

Codon Usage Bias and Determining Forces in Taenia solium Genome

  • Yang, Xing;Ma, Xusheng;Luo, Xuenong;Ling, Houjun;Zhang, Xichen;Cai, Xuepeng
    • Parasites, Hosts and Diseases
    • /
    • 제53권6호
    • /
    • pp.689-697
    • /
    • 2015
  • The tapeworm Taenia solium is an important human zoonotic parasite that causes great economic loss and also endangers public health. At present, an effective vaccine that will prevent infection and chemotherapy without any side effect remains to be developed. In this study, codon usage patterns in the T. solium genome were examined through 8,484 protein-coding genes. Neutrality analysis showed that T. solium had a narrow GC distribution, and a significant correlation was observed between GC12 and GC3. Examination of an NC (ENC vs GC3s)-plot showed a few genes on or close to the expected curve, but the majority of points with low-ENC (the effective number of codons) values were detected below the expected curve, suggesting that mutational bias plays a major role in shaping codon usage. The Parity Rule 2 plot (PR2) analysis showed that GC and AT were not used proportionally. We also identified 26 optimal codons in the T. solium genome, all of which ended with either a G or C residue. These optimal codons in the T. solium genome are likely consistent with tRNAs that are highly expressed in the cell, suggesting that mutational and translational selection forces are probably driving factors of codon usage bias in the T. solium genome.

흉막 스파르가눔증 -1예 보고- (Pleural Sparganosis -A case report -)

  • 김대현;이인호;윤효철;김수철;김범식;조규석;곽영태;박주철
    • Journal of Chest Surgery
    • /
    • 제39권6호
    • /
    • pp.502-504
    • /
    • 2006
  • 스파르가눔증의 주요 발생 원인은 뱀이나 개구리의 생식이다. 스파르가눔증의 흔한 임상 증상은 복벽, 흉벽, 대퇴부, 음낭 등에 나타나는 이동성 피하 결절이며, 가장 확실한 진단 및 치료는 외과적으로 충체를 적출하는 것이다. 저자들은 70세 남자 환자의 흉막에 발생한 스파르가눔증을 치험하였기에 문헌 고찰과 함께 보고하는 바이다.

TLR1 Polymorphism Associations with Gastric Mucosa Morphologic Patterns on Magnifying NBI Endoscopy: a Prospective Cross-Sectional Study

  • Tongtawee, Taweesak;Bartpho, Theeraya;Kaewpitoon, Soraya;Kaewpitoon, Natthawut;Dechsukhum, Chavaboon;Leeanansaksiri, Wilairat;Loyd, Ryan A;Matrakool, Likit;Panpimanmas, Sukij
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권7호
    • /
    • pp.3391-3394
    • /
    • 2016
  • Background: Helicobacter pylori is now recognized as a causative factor of chronic gastritis, gastroduodenal ulcers, gastric cancer and mucosa-associated lymphatic tissue lymphoma. Toll-like receptors are important bacterial receptors in gastric epithelial cell signaling transduction and play critical roles in gastric carcinogenesis. Materials and Methods: A total of 400 patients undergoing esophagogastroduodenoscopy for investigation of chronic abdominal pain were genotyped for single-nucleotide polymorphisms (SNPs) in TLR1 (rs4833095) using TagMan SNPs genotyping assay by real-time PCR hybridization. Relationships with susceptibility to H. pylori infection and pre-malignant gastric mucosa morphological patterns, classified by magnifying NBI endoscopy, were investigated. Results: The percentages of TLR1 rs4833095, CC homozygous, CT heterozygous and TT homozygous cases were 34, 46.5 and 19%, respectively. CC showed statistical differences between H. pylori positive and negative cases (P<0.001). CT and TT correlated with type 1 and type 2 gastric mucosal morphological patterns (P <0.01) whereas CC correlated with types 3 and 4 (P<0.01). Conclusions: This study demonstrated good correlation of TLR1 rs4833095 genotype with severity of inflammation in H. pylori infected gastric mucosa according to gastric mucosal morphologic patterns with magnifying NBI endoscopy.

2016년 소양호에서 채집한 자연산 잉어과 어류와 갑각류의 법정전염병 및 기생충성 질병 모니터링 (Monitoring Pathogen Infection of Freshwater Cyprinid Fish and Crustacean in Soyang Lake in 2016)

  • 문성희;허준욱;차승주;황성돈;손맹현;권준영;권세련
    • 한국수산과학회지
    • /
    • 제51권1호
    • /
    • pp.47-53
    • /
    • 2018
  • The presence of pathogens in wild fish is a potential threat to the fish being raised nearby fish farm. Surveillance of these pathogens in the wild is, thus, highly important to keep fish in the farm safe from serious communicable diseases. Fish and crustacean were sampled 4 times at Soyang Lake in 2016. Pathogens for five reportable communicable diseases including KHVD (koi herpesvirus disease), SVC (spring viraemia of carp), EUS (epizootic ulcerative syndrome) and WSD (white spot disease), and parasites were investigated. In Soyang Lake, pale chub Zacco platypus was the most abundant. Forty seven pale chub, 8 Korea piscivorous chub Opsarichthys uncirostris, 3 oily shiner Sarcocheilichthys variegatus wakiyae and 2 crucian carp Cyprinus carassius were investigated for detection of target diseases of fish. Seventeen Caridina denticulata denticulata, 12 Oriental river prawn Macrobrachium nipponense and 1 Chinese mitten crab Eriocheir sinensis were used for detection of WSD. As the result, reportable communicable diseases were not detected in all the freshwater animals. Dactylogyrus was detected in Korea piscivorous chub. Copepoda was also detected in pale chub and Korea piscivorous chub. Metacercaria was detected in the pale chub sampled in September and October. Those were not metacercaria of liver fluke Clonorchis sinensis.

Evaluation of Anti-Toxoplasma IgG, IgM, and IgA in Mothers with Spontaneous Abortion in Zanjan, Northwest Iran

  • Amin, Abbas;Mazloomzadeh, S.;Haniloo, A.;Mohammadian, F.;Fazaeli, Asghar
    • Parasites, Hosts and Diseases
    • /
    • 제50권4호
    • /
    • pp.371-374
    • /
    • 2012
  • Toxoplasma gondii is one of the major agents of infectious abortions and due to its worldwide distribution can threat healthy pregnant women who had no previous exposure to this parasite. The present study was designed to investigate the contribution of T. gondii to spontaneous abortions in Zanjan, Northwest of Iran, using ELISA method. Blood Samples were collected from 264 mothers referred to the provincial hospitals of Zanjan due to spontaneous abortion. The sera were isolated and subjected to evaluate the anti-Toxoplasma IgG, IgM and IgA antibodies. The results showed IgG positive ($IgG^+$) in 99 cases (37.5%). A total of 68 women (25.8%) showed seroconversion with IgM or IgA or both IgM and IgA. They included: $IgM^+$ in 21 (8.0%), $IgA^+$ in 23 (8.7%) and both $IgM^+$ and $IgA^+$ in 24 (9.1%) subjects. In 23 cases, positive titers of IgM and IgG were accompanied. In general, the analysis of anti-Toxoplasma antibody patterns, showed that about 17% of the spontaneous abortions were associated with serological patterns of acute infection. According to these findings, a considerable proportion of spontaneous abortions can be attributed to T. gondii in the study area.

Effect of Farnesyltransferase Inhibitor R115777 on Mitochondria of Plasmodium falciparum

  • Ha, Young Ran;Hwang, Bae-Geun;Hong, Yeonchul;Yang, Hye-Won;Lee, Sang Joon
    • Parasites, Hosts and Diseases
    • /
    • 제53권4호
    • /
    • pp.421-430
    • /
    • 2015
  • The parasite Plasmodium falciparum causes severe malaria and is the most dangerous to humans. However, it exhibits resistance to their drugs. Farnesyltransferase has been identified in pathogenic protozoa of the genera Plasmodium and the target of farnesyltransferase includes Ras family. Therefore, the inhibition of farnesyltransferase has been suggested as a new strategy for the treatment of malaria. However, the exact functional mechanism of this agent is still unknown. In addition, the effect of farnesyltransferase inhibitor (FTIs) on mitochondrial level of malaria parasites is not fully understood. In this study, therefore, the effect of a FTI R115777 on the function of mitochondria of P. falciparum was investigated experimentally. As a result, FTI R115777 was found to suppress the infection rate of malaria parasites under in vitro condition. It also reduces the copy number of mtDNA-encoded cytochrome c oxidase III. In addition, the mitochondrial membrane potential (${\Delta}{\Psi}m$) and the green fluorescence intensity of MitoTracker were decreased by FTI R115777. Chloroquine and atovaquone were measured by the mtDNA copy number as mitochondrial non-specific or specific inhibitor, respectively. Chloroquine did not affect the copy number of mtDNA-encoded cytochrome c oxidase III, while atovaquone induced to change the mtDNA copy number. These results suggest that FTI R115777 has strong influence on the mitochondrial function of P. falciparum. It may have therapeutic potential for malaria by targeting the mitochondria of parasites.

Amoebic PI3K and PKC Is Required for Jurkat T Cell Death Induced by Entamoeba histolytica

  • Lee, Young Ah;Kim, Kyeong Ah;Min, Arim;Shin, Myeong Heon
    • Parasites, Hosts and Diseases
    • /
    • 제52권4호
    • /
    • pp.355-365
    • /
    • 2014
  • The enteric protozoan parasite Entamoeba histolytica is the causative agent of human amebiasis. During infection, adherence of E. histolytica through Gal/GalNAc lectin on the surface of the amoeba can induce caspase-3-dependent or -independent host cell death. Phosphorylinositol 3-kinase (PI3K) and protein kinase C (PKC) in E. histolytica play an important function in the adhesion, killing, or phagocytosis of target cells. In this study, we examined the role of amoebic PI3K and PKC in amoeba-induced apoptotic cell death in Jurkat T cells. When Jurkat T cells were incubated with E. histolytica trophozoites, phosphatidylserine (PS) externalization and DNA fragmentation in Jurkat cells were markedly increased compared to those of cells incubated with medium alone. However, when amoebae were pretreated with a PI3K inhibitor, wortmannin before being incubated with E. histolytica, E. histolytica-induced PS externalization and DNA fragmentation in Jurkat cells were significantly reduced compared to results for amoebae pretreated with DMSO. In addition, pretreatment of amoebae with a PKC inhibitor, staurosporine strongly inhibited Jurkat T cell death. However, E. histolytica-induced cleavage of caspase-3, -6, and -7 were not inhibited by pretreatment of amoebae with wortmannin or staurosporin. In addition, we found that amoebic PI3K and PKC have an important role on amoeba adhesion to host compartment. These results suggest that amebic PI3K and PKC activation may play an important role in caspase-independent cell death in Entamoeba-induced apoptosis.