• Title/Summary/Keyword: Paraquat-resistant biotype

Search Result 3, Processing Time 0.014 seconds

Protective Enzymes of Paraquat-Resistant Conyza bonariensis (Paraquat 저항성 망초의 protective 효소)

  • Kim, Hee-Joo;Hwang, Eul-Chul
    • Applied Biological Chemistry
    • /
    • v.43 no.1
    • /
    • pp.46-51
    • /
    • 2000
  • The resistance of Cornyza bonariensis to herbicide paraquat was investigated by evaluating the activities of three enzymes concerning in scavenging paraquat-generated toxic oxygen species such as superoxide radical and hydrogen peroxide in resistant and susceptible biotypes. Conyza bonariensis inhabited in cultivated area was more tolerant to paraquat than that of uncultivated area. This is the first report that a biotype of Cornyza bonariensis has appeared in an area with repeated paraquat treatments of Korea. Superoxide dismutase activity of resistant biotype was 20% higher as 150 than that of susceptible biotype. Ascorbate peroxidase activity of resistant biotype was 44% higher than that of susceptible biotype. Glutathione reductase activity of resistant biotype was 64% higher than that of susceptible biotype. It can be concluded from above results that the resistance of Conyza bonariensis to paraquat depends partially on the toxic oxygen species-scavenging efficiency of protective multienzymatic system which is composed of three enzymes, superoxide dismutase, ascorbate peroxidase, and glutathione reductase.

  • PDF

Determination of paraquat-resistant biotype on Conyza canadensis and the resistant mechanism (Paraquat 저항성 생태형 망초의 선발과 저항성 기작)

  • Kim, Sung-Eun;Kim, Seung-Yong;Ahn, Sul-Hwa;Chun, Jae-Chul
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.1
    • /
    • pp.88-96
    • /
    • 2005
  • Paraquat-resistant biotype of Conyza canadensis (L.) Cronq. was determined by chlorophyll loss and random amplified polymorphic DNA (RAPD) analysis and the resistant mechanism was investigated with respect to absorption, translocation, and binding constant. RAPD analysis for paraquat resistant (R) and susceptible (S) biotypes found in a pear orchard revealed that the biotypes possessed remote genetic relationship. Chlorophyll loss, as an indication of paraquat toxicity, of S biotype was 7.8-fold greater than that of R biotype. There were no differences in contents of epicuticular wax and cuticle and amounts of [14C]paraquat penetrating the cuticle between the two biotypes. Little translocation of the herbicide out of the treated leaf was observed in either biotype. Binding constants of paraquat to the cell wall and thylakoid membrane were 7.4-fold and 16.9-fold, respectively, higher in R biotype than in S biotype. The results suggest that the resistance mechanism of C. canadensis biotype is due partly to high binding affinity of paraquat to the cell wall and thylakoid membrane.