• 제목/요약/키워드: Paraperspective Camera Model

검색결과 3건 처리시간 0.014초

스테레오 영상과 준원근 카메라 모델을 이용한 객체의 3차원 형태 및 움직임 복원 (3D Object's shape and motion recovery using stereo image and Paraperspective Camera Model)

  • 김상훈
    • 정보처리학회논문지B
    • /
    • 제10B권2호
    • /
    • pp.135-142
    • /
    • 2003
  • 본 논문은 영상내 객체정보의 정확한 복원을 위하여, 연속된 2차원 영상으로부터 특정 객체의 특징점을 추출하고, 특징점의 위치 데이터들로부터 원형의 3차원 모양 및 모션 정보를 복원하는 알고리즘과 결과를 제시하였다. 2차원 영상의 특징점 검출을 위해서는 물체와 배경이 명확히 구별되는 실험영상 환경에서 색상변환을 통한 자동 추출 방법을 사용하였다. 추출된 2차원 객체의 특징점들로부터 3차원 모앙, 움직임 정보를 복원하기 위하여 스테레오 카메라와 준원근 카메라 모델을 적용하고 SVD(SinEuiar Value Decomposition)에 의한 인수분해연산을 수행하였다. 준원근 카메라 모델의 근본적인 문제인 깊이정보의 복원 에러가, 스테리오 영상 분석에 의해 최소화 되었다. 본 논문에서 제시된 방법들의 성능을 객관적으로 평가하기 위하여 크기와 위치가 알려진 3차원 물체에 대해 실험을 행하였으며, 영상의 21개 특징점 위치와 공간상에서의 3개 방향으로의 움직임 각도를 연산에 의해 복원한 후 원형의 데이터와 비교하여 본 알고리즘의 정확성을 증명하였다.

동영상으로부터 3차원 물체의 모양과 움직임 복원 (3-D shape and motion recovery using SVD from image sequence)

  • 정병오;김병곤;고한석
    • 전자공학회논문지S
    • /
    • 제35S권3호
    • /
    • pp.176-184
    • /
    • 1998
  • We present a sequential factorization method using singular value decomposition (SVD) for recovering both the three-dimensional shape of an object and the motion of camera from a sequence of images. We employ paraperpective projection [6] for camera model to handle significant translational motion toward the camera or across the image. The proposed mthod not only quickly gives robust and accurate results, but also provides results at each frame becauseit is a sequential method. These properties make our method practically applicable to real time applications. Considerable research has been devoted to the problem of recovering motion and shape of object from image [2] [3] [4] [5] [6] [7] [8] [9]. Among many different approaches, we adopt a factorization method using SVD because of its robustness and computational efficiency. The factorization method based on batch-type computation, originally proposed by Tomasi and Kanade [1] proposed the feature trajectory information using singular value decomposition (SVD). Morita and Kanade [10] have extenened [1] to asequential type solution. However, Both methods used an orthographic projection and they cannot be applied to image sequences containing significant translational motion toward the camera or across the image. Poleman and Kanade [11] have developed a batch-type factorization method using paraperspective camera model is a sueful technique, the method cannot be employed for real-time applications because it is based on batch-type computation. This work presents a sequential factorization methodusing SVD for paraperspective projection. Initial experimental results show that the performance of our method is almost equivalent to that of [11] although it is sequential.

  • PDF

다양한 형식의 얼굴정보와 준원근 카메라 모델해석을 이용한 얼굴 특징점 및 움직임 복원 (Facial Features and Motion Recovery using multi-modal information and Paraperspective Camera Model)

  • 김상훈
    • 정보처리학회논문지B
    • /
    • 제9B권5호
    • /
    • pp.563-570
    • /
    • 2002
  • 본 논문은 MPEG4 SNHC의 얼굴 모델 인코딩을 구현하기 위하여 연속된 2차원 영상으로부터 얼굴영역을 검출하고, 얼굴의 특징데이터들을 추출한 후, 얼굴의 3차원 모양 및 움직임 정보를 복원하는 알고리즘과 결과를 제시한다. 얼굴 영역 검출을 위해서 영상의 거리, 피부색상, 움직임 색상정보등을 융합시킨 멀티모달합성의 방법이 사용되었다. 결정된 얼굴영역에서는 MPEG4의 FDP(Face Definition Parameter) 에서 제시된 특징점 위치중 23개의 주요 얼굴 특징점을 추출하며 추출성능을 향상시키기 위하여 GSCD(Generalized Skin Color Distribution), BWCD(Black and White Color Distribution)등의 움직임색상 변환기법과 형태연산 방법이 제시되었다. 추출된 2차원 얼팔 특징점들로부터 얼굴의 3차원 모양, 움직임 정보를 복원하기 위하여 준원근 카메라 모델을 적용하여 SVD(Singular Value Decomposition)에 의한 인수분해연산을 수행하였다. 본 논문에서 제시된 방법들의 성능을 객관적으로 평가하기 위하여 크기와 위치가 알려진 3차원 물체에 대해 실험을 행하였으며, 복원된 얼굴의 움직임 정보는 MPEG4 FAP(Face Animation Parameter)로 변환된 후, 인터넷상에서 확인이 가능한 가상얼굴모델에 인코딩되어 실제 얼굴파 일치하는 모습을 확인하였다.