• Title/Summary/Keyword: Parametric experiments

Search Result 258, Processing Time 0.029 seconds

Parametric numerical study of wind barrier shelter

  • Telenta, Marijo;Batista, Milan;Biancolini, M.E.;Prebil, Ivan;Duhovnik, Jozef
    • Wind and Structures
    • /
    • v.20 no.1
    • /
    • pp.75-93
    • /
    • 2015
  • This work is focused on a parametric numerical study of the barrier's bar inclination shelter effect in crosswind scenario. The parametric study combines mesh morphing and design of experiments in automated manner. Radial Basis Functions (RBF) method is used for mesh morphing and Ansys Workbench is used as an automation platform. Wind barrier consists of five bars where each bar angle is parameterized. Design points are defined using the design of experiments (DOE) technique to accurately represent the entire design space. Three-dimensional RANS numerical simulation was utilized with commercial software Ansys Fluent 14.5. In addition to the numerical study, experimental measurement of the aerodynamic forces acting on a vehicle is performed in order to define the critical wind disturbance scenario. The wind barrier optimization method combines morphing, an advanced CFD solver, high performance computing, and process automaters. The goal is to present a parametric aerodynamic simulation methodology for the wind barrier shelter that integrates accuracy and an extended design space in an automated manner. In addition, goal driven optimization is conducted for the most influential parameters for the wind barrier shelter.

Parametric pitch instability investigation of Deep Draft Semi-submersible platform in irregular waves

  • Mao, Huan;Yang, Hezhen
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.1
    • /
    • pp.13-21
    • /
    • 2016
  • Parametric pitch instability of a Deep Draft Semi-submersible platform (DDS) is investigated in irregular waves. Parametric pitch is a form of parametric instability, which occurs when parameters of a system vary with time and the variation satisfies a certain condition. In previous studies, analyzing of parametric instability is mainly limited to regular waves, whereas the realistic sea conditions are irregular waves. Besides, parametric instability also occurs in irregular waves in some experiments. This study predicts parametric pitch of a Deep Draft Semi-submersible platform in irregular waves. Heave motion of DDS is simulated by wave spectrum and response amplitude operator (RAO). Then Hill equation for DDS pitch motion in irregular waves is derived based on linear-wave theory. By using Bubnov-Galerkin approach to solve Hill equation, the corresponding stability chart is obtained. The differences between regular-waves stability chart and irregular-waves stability chart are compared. Then the sensitivity of wave parameters on DDS parametric pitch in irregular waves is discussed. Based on the discussion, some suggestions for the DDS design are proposed to avoid parametric pitch by choosing appropriate parameters. The results indicate that it's important and necessary to predict DDS parametric pitch in irregular waves during design process.

Semiparametric mixture of experts with unspecified gate network

  • Jung, Dahai;Seo, Byungtae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.3
    • /
    • pp.685-695
    • /
    • 2017
  • The traditional mixture of experts (ME) modeled the gate network using a certain parametric function. However, if the assumed parametric function does not properly reflect the true nature, the prediction strength of ME would become weak. For example, the parametric ME often uses logistic or multinomial logistic models for the network model. However, this could be very misleading if the true nature of the data is quite different from those models. Although, in this case, we may develop more flexible parametric models by extending the model at hand, we will never be free from such misspecification problems. In order to alleviate such weakness of the parametric ME, we propose to use the semi-parametric mixture of experts (SME) in which the gate network is estimated in a non-parametrical way. Based on this, we compared the performance of the SME with those of ME and neural networks via several simulation experiments and real data examples.

Pilot-Based Coding Scheme for Parametric Stereo in Enhanced aacPlus

  • Pang, Hee-Suk
    • ETRI Journal
    • /
    • v.31 no.5
    • /
    • pp.613-615
    • /
    • 2009
  • We propose a pilot-based coding (PBC) scheme for lossless bit rate reduction of parametric stereo (PS) in enhanced aacPlus. It uses PBC in addition to the existing frequency and time differential coding to encode and decode PS parameter indexes. We also design optimal Huffman codebooks (HCBs) for PBC in the proposed scheme. Experiments show that the proposed scheme is superior to the original coding scheme, where both the new coding structure and the optimal HCBs contribute to the bit rate reduction.

Nonparametric Inference for Accelerated Life Testing (가속화 수명 실험에서의 비모수적 추론)

  • Kim Tai Kyoo
    • Journal of Korean Society for Quality Management
    • /
    • v.32 no.4
    • /
    • pp.242-251
    • /
    • 2004
  • Several statistical methods are introduced 1=o analyze the accelerated failure time data. Most frequently used method is the log-linear approach with parametric assumption. Since the accelerated failure time experiments are exposed to many environmental restrictions, parametric log-linear relationship might not be working properly to analyze the resulting data. The models proposed by Buckley and James(1979) and Stute(1993) could be useful in the situation where parametric log-linear method could not be applicable. Those methods are introduced in accelerated experimental situation under the thermal acceleration and discussed through an illustrated example.

Experiments on Extraction of Non-Parametric Warping Functions for Speaker Normalization (화자 정규화를 위한 비정형 워핑함수 도출에 관한 실험)

  • Shin, Ok-Keun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.5
    • /
    • pp.255-261
    • /
    • 2005
  • In this paper. experiments are conducted to extract a set of non-Parametric warping functions to examine the characteristics of the warping among speakers' utterances. For this Purpose. we made use of MFCC and LP spectra of vowels in choosing reference spectrum of each vowel as well as representative spectra of each speaker. These spectra are compared by DTW to give the warping functions of each speaker. The set of warping functions are then defined by clustering the warping functions of all the speakers. Noting that male and female warping functions have shapes similar to Piecewise linear function and Power function respectively, a new hybrid set of warping functions is defined. The effectiveness of the extracted warping functions are evaluated by conducting phone level recognition experiments, and improvements in accuracy rate are observed in both warping functions.

A Study of Parametric Curve Interpolator in CAD/CAM Ststem (CAD/CAM 시스템에서 매개변수형 곡선본간기에 관한 연구)

  • 김희송
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.4
    • /
    • pp.47-52
    • /
    • 1996
  • The interpolator is very important in CNC machines. This study proposed a parametric curve interpolator(PCI) which can be used for machining any sculptured surface represented in a parametric form and generates commands for tool motion between CAD data points according to given accuracy demands. The proposed interpolator is superior to the existing linear interpolator in accuracy, feed rate and acceleration continuity. Moreover in comparison to the recently developed cubic spline interpolator, the PCI has the capability of handling higher order parametric curves and also ensures precise tracking in the velocity domain. Results from real time simulations and experiments on open architecture CNC machines equipped with the proposed interpolator are presented to show its practical capagility. It is believed that the combination of the proposed interpolator and the open architecture machine controller further advances the area of command generation which is an important aspect of CAD/CAM.

  • PDF

Development of a generalized scaling law for underwater explosions using a numerical and experimental parametric study

  • Kim, Yongtae;Lee, Seunggyu;Kim, Jongchul;Ryu, Seunghwa
    • Structural Engineering and Mechanics
    • /
    • v.77 no.3
    • /
    • pp.305-314
    • /
    • 2021
  • In order to reduce enormous cost of real-scale underwater explosion experiments on ships, the mechanical response of the ships have been analyzed by combining scaled-down experiments and Hopkinson's scaling law. However, the Hopkinson's scaling law is applicable only if all variables vary in an identical ratio; for example, thickness of ship, size of explosive, and distance between the explosive and the ship should vary with same ratio. Unfortunately, it is infeasible to meet such uniform scaling requirement because of environmental conditions and limitations in manufacturing scaled model systems. For the facile application of the scaling analysis, we propose a generalized scaling law that is applicable for non-uniform scaling cases in which different parts of the experiments are scaled in different ratios compared to the real-scale experiments. In order to establish such a generalized scaling law, we conducted a parametric study based on numerical simulations, and validated it with experiments and simulations. This study confirms that the initial peak value of response variables in a real-scale experiment can be predicted even when we perform a scaled experiment composed of different scaling ratios for each experimental variable.

A Robust Control System Design for Compensating Hysteresis of a Piezoelectric Actuator-based Actuation Unit (압전 소자 기반 구동 유닛의 히스테리시스 보상 강인 제어기 설계)

  • Kim, Hwa-Soo;Kim, Jong-Won
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.324-330
    • /
    • 2012
  • In this paper, we presents a robust control system design for compensating hysteresis of a piezoelectric actuator-based actuation unit. First, the dynamics between the input voltage and the output displacement of the actuation unit are unravelled via a non-parametric system identification method. From the dynamic characteristics of those experimental transfer functions, a parametric model is then derived, whose dynamics match those of the non-parametric ones under various conditions on input voltages. A robust controller is constructed on the basis of this parametric model in order not only to effectively compensate the hysteresis of the actuation unit but also to guarantee the robust stability. Extensive experiments show that the proposed robust control system successfully mitigate the effect of the hysteresis and improve the tracking capability of the actuation unit.

Frequency Tuning Characteristics of a THz-wave Parametric Oscillator

  • Li, Zhongyang;Bing, Pibin;Xu, Degang;Yao, Jianquan
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.97-102
    • /
    • 2013
  • Frequency tuning characteristics of a THz-wave by varying phase-matching angle and pump wavelength in a noncollinear phase-matching THz-wave parametric oscillator (TPO) are analyzed. A novel scheme to realize the tuning of a THz-wave by moving the cavity mirror forwards and backwards is proposed in a noncollinear phase-matching TPO. The parametric gain coefficients of the THz-wave in a $LiNbO_3$ crystal are explored under different working temperatures. The relationship between the poling period of periodically poled $LiNbO_3$ (PPLN) and the THz-wave frequency under the condition of a quasi-phase-matching configuration is deduced. Such analyses have an impact on the experiments of the TPO.