• 제목/요약/키워드: Parametric Instability

검색결과 111건 처리시간 0.026초

Added resistance and parametric roll prediction as a design criteria for energy efficient ships

  • Somayajula, Abhilash;Guha, Amitava;Falzarano, Jeffrey;Chun, Ho-Hwan;Jung, Kwang Hyo
    • Ocean Systems Engineering
    • /
    • 제4권2호
    • /
    • pp.117-136
    • /
    • 2014
  • The increased interest in the design of energy efficient ships post IMO regulation on enforcing EEDI has encouraged researchers to reevaluate the numerical methods in predicting important hull design parameters. The prediction of added resistance and stability of ships in the rough sea environment dictates selection of ship hulls. A 3D panel method based on Green function is developed for vessel motion prediction. The effects of parametric instability are also investigated using the Volterra series approach to model the hydrostatic variation due to ship motions. The added resistance is calculated using the near field pressure integration method.

조화유동을 갖는 직선 파이프의 매개변수공진 해석 (Parametric and Combination Resonances of at Straight Pipe with Pulsatile Flow)

  • 홍성철
    • 대한기계학회논문집A
    • /
    • 제30권12호
    • /
    • pp.1588-1595
    • /
    • 2006
  • The stabilities of a pinned-pinned straight pipe conveying fluid are investigated by complexification-averaging method. The flow is assumed to vary harmonically about a constant mean velocity. Instability conditions of a governing equation are analytically obtained about parametric primary, secondary and combination resonances. The resulted stability conditions show that instabilities exist when the frequency of flow fluctuation is close to one and two times the natural frequency or to the sum of any two natural frequencies. In case that the fluctuated flow frequency is close to the difference of two natural frequencies, instabilities does not exist.

주기적(週基的)인 압축하중을 받는 원통(円筒) Panel의 동적(動的) 불안정(不安定) 특성(特性)에 관한 연구 (Parametric Instability of Cylinderical Panels)

  • 박승진;미카미 타카시
    • 한국강구조학회 논문집
    • /
    • 제12권6호
    • /
    • pp.737-748
    • /
    • 2000
  • 본 논문은 직선변이 단순지지, 원호변이 단순 또는 고정인 경계조건의 원통 Panel을 해석하였다. 해석방법은 Galerkin법을 사용하였고, 기초방정식은 Love-Timoshenko의 기초식을 이용한 진동 좌굴 및 동적문제에 관한 특성을 명확히 하였다. 특히, 고정지지를 포함한 Panel에 대해서는 시행함수로서 삼각함수만으로 나타나는 경우와 쌍곡선함수로 나타나는 보의 고유함수를 이용하여 해석하였으며 시행함수에 미치는 영향을 검토하였다.

  • PDF

Aeroelastic Behaviour of Aerospace Structural Elements with Follower Force: A Review

  • Datta, P.K.;Biswas, S.
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권2호
    • /
    • pp.134-148
    • /
    • 2011
  • In general, forces acting on aerospace structures can be divided into two categories-a) conservative forces and b) nonconservative forces. Aeroelastic effects occur due to highly flexible nature of the structure, coupled with the unsteady aerodynamic forces, causing unbounded static deflection (divergence) and dynamic oscillations (flutter). Flexible wing panels subjected to jet thrust and missile type of structures under end rocket thrust are nonconservative systems. Here the structural elements are subjected to follower kind of forces; as the end thrust follow the deformed shape of the flexible structure. When a structure is under a constant follower force whose direction changes according to the deformation of the structure, it may undergo static instability (divergence) where transverse natural frequencies merge into zero and dynamic instability (flutter), where two natural frequencies coincide with each other resulting in the amplitude of vibration growing without bound. However, when the follower forces are pulsating in nature, another kind of dynamic instability is also seen. If certain conditions are satisfied between the driving frequency and the transverse natural frequency, then dynamic instability called 'parametric resonance' occurs and the amplitude of transverse vibration increases without bound. The present review paper will discuss the aeroelastic behaviour of aerospace structures under nonconservative forces.

분포접선력을 받는 탄성지지된 보의 동적 불안정 (Dynamic Instability of Elastically Restrained Beams under Distributed Tangential Forces)

  • 류봉조;김인우;이규섭;임경빈;최봉문
    • 한국정밀공학회지
    • /
    • 제15권10호
    • /
    • pp.140-147
    • /
    • 1998
  • The dynamic behavior of elastically restrained beams under the action of distributed tangential forces is investigated in this paper. The beam, which is fixed at one end, is assumed to rest on an intermediate spring support. The governing equations of motion are derived from the energy expressions, and the finite element formulation is employed to calculate the critical distributed tangential force. Jump phenomena for the critical distributed tangential force and instability types are presented for various spring stiffnesses and support positions. Stability maps are generated by performing parametric studies to show how the distributed tangential forces affect the frequencies and the stability of the system considered. Through the numerical simulations, the following conclusioils are obtained: (i) Only flutter type instability exists for the dimensionless spring stiffness K $\leq$ 97, regardless of the position of the spring support. (ii) For the dimensionless spring stiffness K $\leq$ 98, the transition from flutter to divergence occurs at a certain position of the spring support, and the transition position moves from the free end to the free end of the beam as the spring stiffness increases. (iii) For K $\leq$ 10$^{6}$ the support condition can be regarded as a rigid support condition.

  • PDF

Effect of boundary mobility on nonlinear pulsatile-flow induced dynamic instability of FG pipes

  • Zhoumi Wang;Yiru Ren;Qingchun Meng
    • Structural Engineering and Mechanics
    • /
    • 제86권6호
    • /
    • pp.751-764
    • /
    • 2023
  • In practical engineering such as aerial refueling pipes, the boundary of the fluid-conveying pipe is difficult to be completely immovable. Pipes under movable and immovable boundaries are controlled by different dominant nonlinear factors, where the boundary mobility will affect the nonlinear dynamic characteristics, which should be focused on for adopting different strategies for vibration suppression and control. The nonlinear dynamic instability characteristics of functionally graded fluid-conveying pipes lying on a viscoelastic foundation under movable and immovable boundary conditions are systematically studied for the first time. Nonlinear factors involving nonlinear inertia and nonlinear curvature for pipes with a movable boundary as well as tensile hardening and nonlinear curvature for pipes with an immovable boundary are comprehensively considered during the derivation of the governing equations of the principal parametric resonance. The stability boundary and amplitude-frequency bifurcation diagrams are obtained by employing the two-step perturbation- incremental harmonic balance method (TSP-IHBM). Results show that the movability of the boundary of the pipe has a great influence on the vibration amplitude, bifurcation topology, and the physical meanings of the stability boundary due to different dominant nonlinear factors. This research has guidance significance for nonlinear dynamic design of fluid-conveying pipe with avoiding in the instability regions.

Dynamic combination resonance characteristics of doubly curved panels subjected to non-uniform tensile edge loading with damping

  • Udar, Ratnakar. S.;Datta, P.K.
    • Structural Engineering and Mechanics
    • /
    • 제25권4호
    • /
    • pp.481-500
    • /
    • 2007
  • The dynamic instability of doubly curved panels, subjected to non-uniform tensile in-plane harmonic edge loading $P(t)=P_s+P_d\;{\cos}{\Omega}t$ is investigated. The present work deals with the problem of the occurrence of combination resonances in contrast to simple resonances in parametrically excited doubly curved panels. Analytical expressions for the instability regions are obtained at ${\Omega}={\omega}_m+{\omega}_n$, (${\Omega}$ is the excitation frequency and ${\omega}_m$ and ${\omega}_n$ are the natural frequencies of the system) by using the method of multiple scales. It is shown that, besides the principal instability region at ${\Omega}=2{\omega}_1$, where ${\omega}_1$ is the fundamental frequency, other cases of ${\Omega}={\omega}_m+{\omega}_n$, related to other modes, can be of major importance and yield a significantly enlarged instability region. The effects of edge loading, curvature, damping and the static load factor on dynamic instability behavior of simply supported doubly curved panels are studied. The results show that under localized edge loading, combination resonance zones are as important as simple resonance zones. The effects of damping show that there is a finite critical value of the dynamic load factor for each instability region below which the curved panels cannot become dynamically unstable. This example of simultaneous excitation of two modes, each oscillating steadily at its own natural frequency, may be of considerable interest in vibration testing of actual structures.

가스 포일 베어링으로 지지된 고속 회전체의 경사각과 베어링의 기계적 예압이 고유 진동수와 불안정성 발생 속도에 미치는 영향 (Effects of the Slopes of the Rotational Axis and Bearing Preloads on the Natural Frequencies and Onset Speed of the Instability of a Rotor Supported on Gas Foil Bearings)

  • 박문성;이종성;김태호
    • Tribology and Lubricants
    • /
    • 제30권3호
    • /
    • pp.131-138
    • /
    • 2014
  • This study investigates the effects of the slopes of the rotational axis and bearing preloads on the natural frequencies and onset speeds of the instability of a rotor supported on gas foil bearings (GFBs). The predictive model for the rotating system consists of a rigid rotor supported on two gas foil journal bearings (GFJBs) and a pair of gas foil thrust bearings (GFTBs). Each GFJB supports approximately half the rotor weight. As the slope of the rotational axis increases from $0^{\circ}$(horizontal rotor operation) to $90^{\circ}$(vertical rotor operation), the applied load on the GFJB owing to the rotor weight decreases. The predictions show that the natural frequency and onset speed of instability decrease significantly with an increase in the slope of the rotational axis. In a parametric study, the nominal radial clearance and preload for the GFJB were changed. In general, a decrease in the nominal radial clearance lead to an increase in the natural frequency and onset speed of instability. For constant assembly clearance, the decrease in the preload changed the natural frequency and onset speed of instability with insignificant improvements in the rotordynamic stability. The present predictions can be used as design guidelines for GFBs for oil-free high-speed rotating machinery with improved rotordynamic performance.

A parametric analysis of the flutter instability for long span suspension bridges

  • Como, M.;Ferraro, S. Del;Grimaldi, A.
    • Wind and Structures
    • /
    • 제8권1호
    • /
    • pp.1-12
    • /
    • 2005
  • A simplified analysis able to point out the most relevant geometrical and aerodynamic parameters that can influence the flutter of long span modern bridges is the aim of the paper. With this goal, by using a continuous model of the suspension bridge and by a quasi stationary approach, a simple formula of the combined vertical/torsional flutter wind speed is given. A good agreement is obtained comparing the predictions from the proposed formula with the flutter speeds of three modern suspension or cable stayed bridges: the Great Belt East Bridge, the Akashi and Normandie bridges. The paper ends with some comments and comparisons with the well known Selberg formula.

Stability Analysis and Control of Nonlinear Behavior in V2 Switching Buck Converter

  • Hu, Wei;Zhang, Fangying;Long, Xiaoli;Chen, Xinbing;Deng, Wenting
    • Journal of Power Electronics
    • /
    • 제14권6호
    • /
    • pp.1208-1216
    • /
    • 2014
  • Mismatch between switching frequency and circuit parameters often occurs in industrial applications, which would lead to instability phenomena. The bifurcation behavior of $V^2$ controlled buck converter is investigated as the pulse width modulation period is varied. Nonlinear behavior is analyzed based on the monodromy matrix of the system. We observed that the stable period-1 orbit was first transformed to the period-2 bifurcation, which subsequently changed to chaos. The mechanism of the series of period-2 bifurcations shows that the characteristic eigenvalue of the monodromy matrix passes through the unit circle along the negative real axis. Resonant parametric perturbation technique has been applied to prevent the onset of instability. Meanwhile, the extended stability region of the converter is obtained. Simulation and experimental prototypes are built, and the corresponding results verify the theoretical analysis.