• Title/Summary/Keyword: Parametric

Search Result 5,969, Processing Time 0.04 seconds

Mesh distortion sensitivity of 8-node plane elasticity elements based on parametric, metric, parametric-metric, and metric-parametric formulations

  • Rajendran, S.;Subramanian, S.
    • Structural Engineering and Mechanics
    • /
    • v.17 no.6
    • /
    • pp.767-788
    • /
    • 2004
  • The classical 8-node isoparametric serendipity element uses parametric shape functions for both test and trial functions. Although this element performs well in general, it yields poor results under severe mesh distortions. The distortion sensitivity is caused by the lack of continuity and/or completeness of shape functions used for test and trial functions. A recent element using parametric and metric shape functions for constructing the test and trial functions exhibits distortion immunity. This paper discusses the choice of parametric or metric shape functions as the basis for test and/or trial functions, satisfaction of continuity and completeness requirements, and their connection to distortion sensitivity. Also, the performances of four types of elements, viz., parametric, metric, parametric-metric, and metric-parametric, are compared for distorted meshes, and their merits and demerits are discussed.

Parametric pitch instability investigation of Deep Draft Semi-submersible platform in irregular waves

  • Mao, Huan;Yang, Hezhen
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.1
    • /
    • pp.13-21
    • /
    • 2016
  • Parametric pitch instability of a Deep Draft Semi-submersible platform (DDS) is investigated in irregular waves. Parametric pitch is a form of parametric instability, which occurs when parameters of a system vary with time and the variation satisfies a certain condition. In previous studies, analyzing of parametric instability is mainly limited to regular waves, whereas the realistic sea conditions are irregular waves. Besides, parametric instability also occurs in irregular waves in some experiments. This study predicts parametric pitch of a Deep Draft Semi-submersible platform in irregular waves. Heave motion of DDS is simulated by wave spectrum and response amplitude operator (RAO). Then Hill equation for DDS pitch motion in irregular waves is derived based on linear-wave theory. By using Bubnov-Galerkin approach to solve Hill equation, the corresponding stability chart is obtained. The differences between regular-waves stability chart and irregular-waves stability chart are compared. Then the sensitivity of wave parameters on DDS parametric pitch in irregular waves is discussed. Based on the discussion, some suggestions for the DDS design are proposed to avoid parametric pitch by choosing appropriate parameters. The results indicate that it's important and necessary to predict DDS parametric pitch in irregular waves during design process.

ON THE CONSTRUCTION AND THE EXISTENCE OF PARAMETRIC CUBIC$g^2$ B-SPLINE

  • Kimn, Ha-Jine
    • Communications of the Korean Mathematical Society
    • /
    • v.10 no.2
    • /
    • pp.483-490
    • /
    • 1995
  • A parametric cubic spline interpolating at fixed number of nodes is constructed by formulating a parametric cubic $g^2$ B-splines $S_3(t)$ with not equally spaced parametric knots. Since the fact that each component is in $C^2$ class is not enough to provide the geometric smoothness of parametric curves, the existence of $S_3(t)$ oriented toward the modified second-order geometric continuity is focalized in our work.

  • PDF

Application of Parametric Acoustic Source to Fish Finding (Parametric 음원의 어탐이용에 관한 고찰)

  • Lee, Un-Hui;Jang, Ji-Won
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.4
    • /
    • pp.189-197
    • /
    • 1987
  • As the basic research for the application of a parametric acoustic source to fish finding, the characteristics of beam patterns and parametric gains of the acoustic source were investigated and target strengths of fish, grey mullet, with the acoustic source were measured. The mean primary frequency of the acoustic source was 200KHz and the produced sounds by difference-frequencies were 5KHz, 10KHz, 16KHz and 20KHz. For measurement of target strength in yaw (coronal) plane of fish the to be target was 34cm in length, the pulse duration of the source was 0.3m/sec and the difference frequency was 10KHz in consideration of the length of fish and of parametric gain of the acoustic source. The results obtained are as follow: 1. Beam widths(down 3 dB) of the parametric acoustic source excited at frequencies of 5KHz, 10KHz, 16KHz, and 20KHz were 4.3$^{\circ}$, 2.2$^{\circ}$, 3.0$^{\circ}$ and 2.5$^{\circ}$ respectively. 2. Parametric gains of the parametric acoustic source excited at frequencies of 5KHz, 10KHz, 16KHz and 20KHz were -41 dB, -45 dB, -60 dB and -68 dB respectively. 3. Target strengths of a fish in head and tail aspect using the parametric acoustic source were 5 dB lower than those using 200KHz single frequency sound, but those in side aspect were similar. 4. Target strengths of two or three fish with the parametric acoustic source were 1-3 dB lower than those in head and tail aspect using 200KHz single frequency sound.

  • PDF

A Method for Solving Parametric Nonlinear Programming Problems with Linear Constraints (파라메트릭 선형계획문제의 해법: 선형제약 경우)

  • 양용준
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.7 no.1
    • /
    • pp.11-16
    • /
    • 1982
  • A method is described for the solution of a linearly constrained program with parametric nonlinear objective function. The algorithm proposed in this paper may be regarded as an extension of the simplex method for parametric linear programming. Namely, it specifies the basis at each stage such that feasibility ana optimality of the original problem are satisfied by the optimal solution of the reduced parametric problem involving only nonbasic variables. It is shown that under appropriate assumptions the algorithm is finite. Parametric procedures are also indicated for solving each reduced parametric problem by maintaining the Kuhn-Tucker conditions as the parameter value varies.

  • PDF

Bayesian Semi-Parametric Regression for Quantile Residual Lifetime

  • Park, Taeyoung;Bae, Wonho
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.4
    • /
    • pp.285-296
    • /
    • 2014
  • The quantile residual life function has been effectively used to interpret results from the analysis of the proportional hazards model for censored survival data; however, the quantile residual life function is not always estimable with currently available semi-parametric regression methods in the presence of heavy censoring. A parametric regression approach may circumvent the difficulty of heavy censoring, but parametric assumptions on a baseline hazard function can cause a potential bias. This article proposes a Bayesian semi-parametric regression approach for inference on an unknown baseline hazard function while adjusting for available covariates. We consider a model-based approach but the proposed method does not suffer from strong parametric assumptions, enjoying a closed-form specification of the parametric regression approach without sacrificing the flexibility of the semi-parametric regression approach. The proposed method is applied to simulated data and heavily censored survival data to estimate various quantile residual lifetimes and adjust for important prognostic factors.

Directional Characteristics of Parametric Loudspeakers in Near-field (파라메트릭 스피커의 근접음장 방향성 특성연구)

  • Ju, Hyeong-Sick;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.545-550
    • /
    • 2005
  • A parametric loudspeaker is a device to generate highly directional sound using ultrasounds. The parametric loudspeaker could be used to focus sound in a limited space, so it is important to study the characteristics of the parametric loudspeaker in near-field. Mechanism of the audible sound generation in the parametric loudspeaker is explained by nonlinear interaction of the ultrasounds and is modeled as KZK equation, the nonlinear wave equation which contains attenuation, nonlinearity and diffraction. To measure the directional characteristics of the parametric loudspeaker precisely, a method to reduce the spurious signal which taints the measured signal was invented. With the method, directivity patterns of the parametric loudspeaker were measured and compared to the approximated solution and piston sources.

  • PDF

overseas - Parametric DesignII (해외건축동향: 미국 - 파라메트릭 디자인II)

  • Sung, Woojae
    • Korean Architects
    • /
    • s.554
    • /
    • pp.96-97
    • /
    • 2015
  • 지난 편에서는 parametric design의 발생과 흐름에 대해 간략하게 이야기 해 보았습니다. 이번 편에서는 parametric design을 하기 위해 고안된 여러 가지 parametric tool들이 바탕을 두고 있는 기본적인 개념 및 그 구성요소 등에 대해 간략하게 이야기를 해보고자 합니다.

  • PDF

Development of a Parametric Design System for Membrane Structures (연성 막구조의 파라메트릭 설계 시스템 개발)

  • Choi, Hyun-chul;Lee, Si Eun;Kim, Chee Kyeong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.4
    • /
    • pp.29-36
    • /
    • 2016
  • The objective of this research is to development of a parametric design system for membrane structures. The parametric design platform for the spatial structures has been designed and implemented. Rhino3D is used as a 3D graphic kernel and Grasshopper is introduced as a parametric modeling engine. Modeling components such as structural members, loading conditions, and support conditions are developed for structural modeling of the spatial structures. The interface module with commercial structural analysis programs is implemented. An iterative generation algorithm for design alternatives is a part of the design platform. This paper also proposes a design approach for the parametric design of Spoke Wheel membrane structures. A parametric modeling component is designed and implemented. SOFiSTik is examined to interact with the design platform as the structural analysis module. The application of the developed interface is to design optimally Spoke Wheel Shaped Ductile Membrane Structure using parametric design. It is possible to obtain objective shape by controlling the parameter using a parametric modeling designed for shape finding of spoke wheel shaped ductile membrane structure. Recently, looking at the present Construction Trends, It has increased the demand of the large spatial structure. But, It requires a lot of time for Modeling design and the Structural analysis. Finally an optimization process for membrane structures is proposed.

A Hybrid Parametric Translator Using the Feature Tree and the Macro File (피처 트리와 매크로 파일을 이용하는 하이브리드 파라메트릭 번역기)

  • 문두환;김병철;한순흥
    • Korean Journal of Computational Design and Engineering
    • /
    • v.7 no.4
    • /
    • pp.240-247
    • /
    • 2002
  • Most commercial CAD systems provide parametric modeling functions, and by using these capabilities designers can edit a CAD model in order to create design variants. It is necessary to transfer parametric information during a CAD model exchange to modify the model inside the receiving system. However, it is not possible to exchange parametric information of CAD models based on the cur-rent version of STEP. The designer intents which are contained in the parametric information can be lost during the STEP transfer of CAD models. This paper introduces a hybrid CAB model translator, which also uses the feature tree of commercial CAD systems in addition to the macro file to allow transfer of parametric information. The macro-parametric approach is to exchange CAD models by using the macro file, which contains the history of user commands. To exchange CAD models using the macro-parametric approach, the modeling commands of several commercial CAD systems are analyzed. Those commands are classified and a set of standard modeling commands has been defined. As a neutral fie format, a set of standard modeling commands has been defined. Mapping relations between the standard modeling commands set and the native modeling commands set of commercial CAD systems are defined. The scope of the current version is limited to parts modeling and assemblies are excluded.