• 제목/요약/키워드: Parameters design optimization

검색결과 1,580건 처리시간 0.025초

세탁기 도어 거동 인자 설계 최적화를 위한 시뮬레이터 및 로봇형 도어 장치 개발 (Development of Simulator and Robotic Door for Parametric Design Optimization of Washing Machine Door Motion)

  • 이준섭;정병진;문형필
    • 로봇학회논문지
    • /
    • 제12권1호
    • /
    • pp.19-25
    • /
    • 2017
  • A design methodology for parametric design optimization of washing machine door is presented. We develop a motion simulator and a robotic door to simulate the various motion of washing machine doors. The motion of the washing machine door is related to hinge parameters. Springs and dampers are usually used in the hinge of washing machine door for controlling motion of the door. A physical simulator of the door motion is used for finding candidate parameters of the hinge and a robotic door whose motion is controlled algorithmically is used for consumer tests. Through the consumer evaluation on the robotic motion, the optimized parameters are determined. We find the optimal parameters as a function of angle and angular velocity of the door.

고정밀 서보 제어를 위한 다매개변수 자동 조정 방법 (An Optimal Approach to Auto-tuning of Multiple Parameters for High-Precision Servo Control Systems)

  • 김남국
    • 한국기계가공학회지
    • /
    • 제21권7호
    • /
    • pp.43-52
    • /
    • 2022
  • Design of a controller for a high-precision servo control system has been a popular topic while finding optimal parameters for multiple controllers is still a challenging subject. In this paper, we propose a practical scheme to optimize multi-parameters for the robust servo controller design by introducing a new cost function and optimization scheme. The proposed design method provides a simple and practical tool for the systematic servo design to reduce the control error with guaranteeing robust stability of the overall system. The reduction of the position error by 24% along with a faster convergence rate is demonstrated using a typical hard disk drive servo controller with 41 parameters.

수치적 노이즈가 존재하는 사출 성형품 휨의 최적설계 (Design Optimization for Minimizing Warpage in Injection Molding Parts with Numerical Noise)

  • 박창현;김성룡;최동훈;표병기
    • 대한기계학회논문집A
    • /
    • 제29권11호
    • /
    • pp.1445-1454
    • /
    • 2005
  • In order to minimize warping deformation which is an essential factor in the failure of injection molding parts, this study proposes an optimization design method fer determining design variables of injection molding parts. First, using a commercial package program for injection molding analysis, namely, Computer Aided Plastics Application(CAPA), we investigate the effects of parameters of injection molding process. Next, an optimum design process is established by interfacing CAPA to PQRSM embedded in EMD10S, a design framework developed by the conte. of innovative Design Optimization Technology(iDOT). PQRSM is a very efficient sequential approximate optimization algorithm. Optimum design results demonstrate the effectiveness of the design method suggested in this study by showing that the results of the optimum design is better than those of the initial design. It is believed that the proposed methodology can be applied to other injection molding design applications.

Numerical investigation and optimization of the solar chimney performances for natural ventilation using RSM

  • Mohamed Walid Azizi;Moumtez Bensouici;Fatima Zohra Bensouici
    • Structural Engineering and Mechanics
    • /
    • 제88권6호
    • /
    • pp.521-533
    • /
    • 2023
  • In the present study, the finite volume method is applied for the thermal performance prediction of the natural ventilation system using vertical solar chimney whereas, design parameters are optimized through the response surface methodology (RSM). The computational simulations are performed for various parameters of the solar chimney such as absorber temperature (40≤Tabs≤70℃), inlet temperature (20≤T0≤30℃), inlet height of (0.1≤h≤0.2 m) and chimney width (0.1≤d≤0.2 m). Analysis of variance (ANOVA) was carried out to identify the design parameters that influence the average Nusselt number (Nu) and mass flow rate (ṁ). Then, quadratic polynomial regression models were developed to predict of all the response parameters. Consequently, numerical and graphical optimizations were performed to achieve multi-objective optimization for the desired criteria. According to the desirability function approach, it can be seen that the optimum objective functions are Nu=25.67 and ṁ=24.68 kg/h·m, corresponding to design parameters h=0.18 m, d=0.2 m, Tabs=46.81℃ and T0=20℃. The optimal ventilation flow rate is enhanced by about 96.65% compared to the minimum ventilation rate, while solar energy consumption is reduced by 49.54% compared to the maximum ventilation rate.

Optimization of injection molding process for car fender in consideration of energy efficiency and product quality

  • Park, Hong Seok;Nguyen, Trung Thanh
    • Journal of Computational Design and Engineering
    • /
    • 제1권4호
    • /
    • pp.256-265
    • /
    • 2014
  • Energy efficiency is an essential consideration in sustainable manufacturing. This study presents the car fender-based injection molding process optimization that aims to resolve the trade-off between energy consumption and product quality at the same time in which process parameters are optimized variables. The process is specially optimized by applying response surface methodology and using non-dominated sorting genetic algorithm II (NSGA II) in order to resolve multi-object optimization problems. To reduce computational cost and time in the problem-solving procedure, the combination of CAE-integration tools is employed. Based on the Pareto diagram, an appropriate solution is derived out to obtain optimal parameters. The optimization results show that the proposed approach can help effectively engineers in identifying optimal process parameters and achieving competitive advantages of energy consumption and product quality. In addition, the engineering analysis that can be employed to conduct holistic optimization of the injection molding process in order to increase energy efficiency and product quality was also mentioned in this paper.

파일럿형 압력 릴리프 밸브의 최적설계 (An Optimal Design of pilot type relief valve by Genetic Algorithm)

  • 김승우;안경관;양순용;이병룡;윤소남
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1006-1011
    • /
    • 2003
  • In this study, a novel systematic design procedure by Genetic Algorithm of a two stage relief valve is proposed. First of all, a mathematical model describing the dynamics of a balanced piston type relief valve has been derived. Governing equations such as dynamic equations for the main spool and the pilot spool and flow equations for each orifice are established. The mathematical model is verified by comparing the results of simulation with that of experiments. Furthermore, influences of the parameters on the dynamic characteristics of a relief valve have been investigated by simulation of the proposed model. Major design parameters on the valve response are determined, which affect the system response significantly. And then, using the determined parameters, the optimization of the two stage relief valve by Genetic Algorithm, which is a random search algorithm can find the global optimum without converging local optimum, is performed. The optimal design process of a two stage relief valve is presented to determine the major design parameters. Fitness function reflects the changing pressure according to parameters. It is shown that the genetic algorithms satisfactorily optimized the major design parameters of the two stage relief valve.

  • PDF

유전자 알고리즘을 이용한 2단 릴리프 밸브의 최적설계 (An Optimal Design of a two stage relief valve by Genetic Algorithm)

  • 김승우;안경관;이병룡
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.501-506
    • /
    • 2002
  • In this study, a novel systematic design procedure by Genetic Algorithm of a two stage relief valve is proposed. First of all. a mathematical model describing the dynamics of a balanced piston type relief valve has been derived. Governing equations such as dynamic equations for the main spool and the pilot spool and flow equations for each orifice are established. The mathematical model is verified by comparing the results of simulation with that of experiments. Furthermore, influences of the parameters on the dynamic characteristics of a relief valve have been investigated by simulation of the proposed model. Major design parameters on the valve response are determined, which affect the system response significantly. And then, using the determined parameters, the optimization of the two stage relief valve by Genetic Algorithm, which is a random search algorithm can find the global optimum without converging local optimum, is performed. The optimal design process of a two stage relief valve is presented to determine the major design parameters. Fitness function reflects the changing pressure according to parameters. It is shown that the genetic algorithms satisfactorily optimized the major design parameters of the two stage relief valve.

  • PDF

덮개 함수를 이용한 강건 최적설계의 제한 조건 단일화 (Unification of Constraints for Robust Optimization Using an Envelope Function)

  • 이정준;정도현;이병채
    • 대한기계학회논문집A
    • /
    • 제26권8호
    • /
    • pp.1719-1726
    • /
    • 2002
  • Design variables and design parameters are rarely deterministic in practice. Robust optimal design takes into consideration of the uncertainties in the design variables and parameters. Robust optimization methodology with probability constraints requires a lot of system analyses fer calculating failure probability of each constraint. By introducing an envelope function to reduce the number of constraints, efficiency of robust optimization techniques can be considerably improved. Through four illustrative examples, it is shown that the number of system analyses is greatly decreased while little differences in the optimum results are observed.

강소성 유한요소해석과 반응표면분석법을 이용한 박판성형공정에서의 드로우 비드력 최적설계 (Optimum Design of Draw-bead Force in Sheet Metal Stamping using Rigid-plastic FEM and Responses Surface Methodology)

  • 김세호;허훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 춘계학술대회논문집
    • /
    • pp.143-148
    • /
    • 1999
  • Design optimization is performed to calculated the draw-bead force for satisfying the design re-quirements. For an analysis tool a rigid-plastic finite element method with modified membrane element is adopted. response surface methodology is utilized for constructing the approximation surface for the optimum searching of draw bead force in sheet metal forming process. the algorithm developed is ap-plied to a design of the draw bead forces in a deep drawing process. The results show that the design of process parameters is applicable in complex metal forming analysis. It is also noted that the present algo-rithm enhances the stable optimum solution with small times of optimization iteration.

  • PDF

Optimizing Design Variables for High Efficiency Induction Motor Considering Cost Effect by Using Genetic Algorithm

  • Han, Pil-Wan;Seo, Un-Jae;Choi, Jae-Hak;Chun, Yon-Do;Koo, Dae-Hyun;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권6호
    • /
    • pp.948-953
    • /
    • 2012
  • The characteristics of an induction motor vary with the number of parameters and the performance relationship between the parameters also is implicit. In case of the induction motor design, we generally should estimate many objective physical quantities in the optimization procedure. In this article, the multi objective design optimization based on genetic algorithm is applied for the three phase induction motor. The efficiency, starting torque, and material cost are selected for the objectives. The validity of the design results is also clarified by comparison between calculated results and measured ones.