• Title/Summary/Keyword: Parameters Optimization

Search Result 3,296, Processing Time 0.03 seconds

Evaluation of conceptual rainfall-runoff models for different flow regimes and development of ensemble model (개념적 강우유출 모형의 유량구간별 적합성 평가 및 앙상블 모델 구축)

  • Yu, Jae-Ung;Park, Moon-Hyung;Kim, Jin-Guk;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.2
    • /
    • pp.105-119
    • /
    • 2021
  • An increase in the frequency and intensity of both floods and droughts has been recently observed due to an increase in climate variability. Especially, land-use change associated with industrial structure and urbanization has led to an imbalance between water supply and demand, acting as a constraint in water resource management. Accurate rainfall-runoff analysis plays a critical role in evaluating water availability in the water budget analysis. This study aimed to explore various continuous rainfall-runoff models over the Soyanggang dam watershed. Moreover, the ensemble modeling framework combining multiple models was introduced to present scenarios on streamflow considering uncertainties. In the ensemble modeling framework, rainfall-runoff models with fewer parameters are generally preferred for effective regionalization. In this study, more than 40 continuous rainfall-runoff models were applied to the Soyanggang dam watershed, and nine rainfall-runoff models were primarily selected using different goodness-of-fit measures. This study confirmed that the ensemble model showed better performance than the individual model over different flow regimes.

Optimization of a Highly Efficient Narrow-viewing-angle LCD for Head-mounted-display Applications (헤드마운트 디스플레이 응용을 위한 고효율 협시야각 LCD 최적화 연구)

  • Wi, Sung Hee;Kang, Min Jin;Hwang, Eui Sun;Baek, Gi Hyeon;Kim, Jin Hwan;Park, Hyeon Uk;Cheong, Byoung-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.2
    • /
    • pp.67-73
    • /
    • 2022
  • In a head-mounted display (HMD) for virtual-reality applications, a narrow viewing angle is preferred to the usual, wide viewing angle because the HMD is positioned close in front of the user's eyes, and the display position is fixed. In this paper, we propose a new back-light unit (BLU) for implementing a narrow viewing angle, which is suitable for a HMD. By optimizing the scattering patterns in the light-guide-plate and inverse-prism structures, the viewing angle and correlations between structural parameters in the BLU components are analyzed with ray-tracing simulations. As a result, a double-angle inverse-prism structure incorporating the scattering patterns of a light-guide plate is chosen, which results in a 14% increase in center luminance, a 16% decrease in the vertical viewing angle, and a light efficiency of up to 70%, compared to a conventional BLU. Thus, the new BLU system is expected to be applied in a high-efficiency liquid crystal display.

Multi-fidelity uncertainty quantification of high Reynolds number turbulent flow around a rectangular 5:1 Cylinder

  • Sakuma, Mayu;Pepper, Nick;Warnakulasuriya, Suneth;Montomoli, Francesco;Wuch-ner, Roland;Bletzinger, Kai-Uwe
    • Wind and Structures
    • /
    • v.34 no.1
    • /
    • pp.127-136
    • /
    • 2022
  • In this work a multi-fidelity non-intrusive polynomial chaos (MF-NIPC) has been applied to a structural wind engineering problem in architectural design for the first time. In architectural design it is important to design structures that are safe in a range of wind directions and speeds. For this reason, the computational models used to design buildings and bridges must account for the uncertainties associated with the interaction between the structure and wind. In order to use the numerical simulations for the design, the numerical models must be validated by experi-mental data, and uncertainties contained in the experiments should also be taken into account. Uncertainty Quantifi-cation has been increasingly used for CFD simulations to consider such uncertainties. Typically, CFD simulations are computationally expensive, motivating the increased interest in multi-fidelity methods due to their ability to lev-erage limited data sets of high-fidelity data with evaluations of more computationally inexpensive models. Previous-ly, the multi-fidelity framework has been applied to CFD simulations for the purposes of optimization, rather than for the statistical assessment of candidate design. In this paper MF-NIPC method is applied to flow around a rectan-gular 5:1 cylinder, which has been thoroughly investigated for architectural design. The purpose of UQ is validation of numerical simulation results with experimental data, therefore the radius of curvature of the rectangular cylinder corners and the angle of attack are considered to be random variables, which are known to contain uncertainties when wind tunnel tests are carried out. Computational Fluid Dynamics (CFD) simulations are solved by a solver that employs the Finite Element Method (FEM) for two turbulence modeling approaches of the incompressible Navier-Stokes equations: Unsteady Reynolds Averaged Navier Stokes (URANS) and the Large Eddy simulation (LES). The results of the uncertainty analysis with CFD are compared to experimental data in terms of time-averaged pressure coefficients and bulk parameters. In addition, the accuracy and efficiency of the multi-fidelity framework is demonstrated through a comparison with the results of the high-fidelity model.

Formulation Optimization Study of Carvedilol and Ivabradine Fixed-dose Combination Tablet Using Full-factorial Design (완전요인배치법을 이용한 carvedilol 및 ivabradine 이층정 복합제 내 carvedilol 속방층 제형 최적화 연구)

  • Yu Lim Song;Kang Min Kim
    • Journal of Life Science
    • /
    • v.33 no.3
    • /
    • pp.268-276
    • /
    • 2023
  • This study was conducted to optimize the formulation conditions of the immediate-release layer of carvedilol in the development of a two-layer tablet formulation for carvedilol and ivabradine. Using a 24+3 full-factorial design of experiments, excipients (microcrystalline cellulose, citric acid, and crospovidone) of the carvedilol immediate-release layer (wet granulation part) and process parameters for the tablet compression process (main compression) were optimized, and seven types of each dependent variable (assay, content uniformity, hardness, friability, disintegration, and dissolution [pH 1.2 and 6.8]) were evaluated using design expert software. The analysis of variance results confirmed that the main compression has a significant effect on hardness, friability, and disintegration time and that microcrystalline cellulose has a major effect on friability and dissolution. In addition, it was confirmed that citric acid has a significant effect on friability. Crospovidone affects friability and dissolution. According to the design space from the design of the experiment results, the optimized range is microcrystalline cellulose (~18.0-32.0 mg), citric acid (~0.5-12 mg), and main compression (~615-837 kgf). Consequently, this study confirmed the availability of manufacturing the carvedilol immediate-release layer in which all risk factors evaluated in the initial risk assessment are removed.

Prediction of Music Generation on Time Series Using Bi-LSTM Model (Bi-LSTM 모델을 이용한 음악 생성 시계열 예측)

  • Kwangjin, Kim;Chilwoo, Lee
    • Smart Media Journal
    • /
    • v.11 no.10
    • /
    • pp.65-75
    • /
    • 2022
  • Deep learning is used as a creative tool that could overcome the limitations of existing analysis models and generate various types of results such as text, image, and music. In this paper, we propose a method necessary to preprocess audio data using the Niko's MIDI Pack sound source file as a data set and to generate music using Bi-LSTM. Based on the generated root note, the hidden layers are composed of multi-layers to create a new note suitable for the musical composition, and an attention mechanism is applied to the output gate of the decoder to apply the weight of the factors that affect the data input from the encoder. Setting variables such as loss function and optimization method are applied as parameters for improving the LSTM model. The proposed model is a multi-channel Bi-LSTM with attention that applies notes pitch generated from separating treble clef and bass clef, length of notes, rests, length of rests, and chords to improve the efficiency and prediction of MIDI deep learning process. The results of the learning generate a sound that matches the development of music scale distinct from noise, and we are aiming to contribute to generating a harmonistic stable music.

Leg Fracture Recovery Monitoring Simulation using Dual T-type Defective Microstrip Patch Antenna (쌍 T-형 결함 마이크로스트립 패치 안테나를 활용한 다리 골절 회복 모니터링 모의실험)

  • Byung-Mun Kim;Lee-Ho Yun;Sang-Min Lee;Yeon-Taek Park;Jae-Pyo Hong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.4
    • /
    • pp.587-594
    • /
    • 2023
  • In this paper, we present the design and optimization process of an on-body microstrip patch antenna with a paired T-type defect for monitoring fracture recovery of human legs. This antenna is designed to be light, thin and compact despite the improvement of return loss and bandwidth performance by adjusting the size of the T-type defect. The structure around the applied human leg is structured as a 5-layer dielectric plane, and the complex dielectric constant of each layer is calculated using the 4-pole Cole-Cole model parameters. In a normal case without bone fracture, the return loss of the on-body antenna is -66.71dB at 4.0196GHz, and the return loss difference ΔS11 is 37.95dB when the gallus layer have a length of 10.0mm, width of 1.0mme, and height of 2.0mm. A 3'rd degree polynomial is presented to predict the height of the gallus layer for the change in return loss, and the polynomial has a very high prediction suitability as RSS = 1.4751, R2 = 0.9988246, P-value = 0.0001841.

Study on Radionuclide Migration Modelling for a Single Fracture in Geologic Medium : Characteristics of Hydrodynamic Dispersion Diffusion Model and Channeling Dispersion Diffusion Model (단일균열 핵종이동모델에 관한 연구 -수리분산확산모델과 국부통로확산모델의 특성-)

  • Keum, D.K.;Cho, W.J.;Hahn, P.S.;Park, H.H.
    • Nuclear Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.401-410
    • /
    • 1994
  • Validation study of two radionuclide migration models for single fracture developed in geologic medium the hydrodynamic dispersion diffusion model(HDDM) and the channeling dispersion diffusion model(CDDM), was studied by migration experiment of tracers through an artificial granite fracture on the labolatory scale. The tracers used were Uranine and Sodium lignosulfonate know as nonsorbing material. The flow rate ranged 0.4 to 1.5 cc/min. Related parameters for the models were estimated by optimization technique. Theoretical breakthrough curves with experimental data were compared. In the experiment, it was deduced that the surface sorption for both tracers did not play an important role while the diffusion of Uranine into the rock matrix turned out to be an important mass transfer mechanism. The parameter characterizing the rock matrix diffusion of each model agreed well The simulated result showed that the amount of flow rate could not tell the CDDM from the HDDM quantitatively. On the other hand, the variation of fracture length gave influence on the two models in a different degree. The dispersivity of breakthrough curve of the CDDM was more amplified than that of the CDDM when the fracture length was increased. A good agreement between the models and experimental data gave a confirmation that both models were very useful in predicting the migration system through a single fracture.

  • PDF

Study on Power Distribution Algorithm in terms of Fuel Equivalent (등가 연료 관점에서의 동력 분배 알고리즘에 대한 연구)

  • Kim, Gyoungeun;Kim, Byeongwoo
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.5 no.6
    • /
    • pp.583-591
    • /
    • 2015
  • In order to evaluate the performance of TAS applied to the hybrid vehicle of the soft belt driven, acceleration performance and fuel consumption performance is to be superior to the existing vehicle. The key components of belt driven TAS(Torque Assist System), such as the engine, the motor and the battery, The key components of the driven belt TAS, such as the engine, the motor, and the battery, have a significant impact on fuel consumption performance of the vehicle. Therefore, in order to improve the efficiency at the point of view based on the overall system, the study of the power distribution algorithm for controlling the main source powers is necessary. In this paper, we propose the power distribution algorithm, applied the homogeneous analysis method in terms of fuel equivalent, for minimizing the fuel consumption. We have confirmed that the proposed algorithm is contribute to improving the fuel consumption performance satisfied the constraints considering the vehicle status information and the required power through the control parameters to minimize the fuel consumption of the engine. The optimization process of the proposed driving strategy can reduce the trial and error in the research and development process and monitor the characteristics of the control parameter quickly and accurately. Therefore, it can be utilized as a way to derive the operational strategy to minimize the fuel consumption.

Parameter search methodology of support vector machines for improving performance (속도 향상을 위한 서포트 벡터 머신의 파라미터 탐색 방법론)

  • Lee, Sung-Bo;Kim, Jae-young;Kim, Cheol-Hong;Kim, Jong-Myon
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.3
    • /
    • pp.329-337
    • /
    • 2017
  • This paper proposes a search method that explores parameters C and σ values of support vector machines (SVM) to improve performance while maintaining search accuracy. A traditional grid search method requires tremendous computational times because it searches all available combinations of C and σ values to find optimal combinations which provide the best performance of SVM. To address this issue, this paper proposes a deep search method that reduces computational time. In the first stage, it divides C-σ- accurate metrics into four regions, searches a median value of each region, and then selects a point of the highest accurate value as a start point. In the second stage, the selected start points are re-divided into four regions, and then the highest accurate point is assigned as a new search point. In the third stage, after eight points near the search point. are explored and the highest accurate value is assigned as a new search point, corresponding points are divided into four parts and it calculates an accurate value. In the last stage, it is continued until an accurate metric value is the highest compared to the neighborhood point values. If it is not satisfied, it is repeated from the second stage with the input level value. Experimental results using normal and defect bearings show that the proposed deep search algorithm outperforms the conventional algorithms in terms of performance and search time.

Methodology for Developing a Predictive Model for Highway Traffic Information Using LSTM (LSTM을 활용한 고속도로 교통정보 예측 모델 개발 방법론)

  • Yoseph Lee;Hyoung-suk Jin;Yejin Kim;Sung-ho Park;Ilsoo Yun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.1-18
    • /
    • 2023
  • With the recent developments in big data and deep learning, a variety of traffic information is collected widely and used for traffic operations. In particular, long short-term memory (LSTM) is used in the field of traffic information prediction with time series characteristics. Since trends, seasons, and cycles differ due to the nature of time series data input for an LSTM, a trial-and-error method based on characteristics of the data is essential for prediction models based on time series data in order to find hyperparameters. If a methodology is established to find suitable hyperparameters, it is possible to reduce the time spent in constructing high-accuracy models. Therefore, in this study, a traffic information prediction model is developed based on highway vehicle detection system (VDS) data and LSTM, and an impact assessment is conducted through changes in the LSTM evaluation indicators for each hyperparameter. In addition, a methodology for finding hyperparameters suitable for predicting highway traffic information in the transportation field is presented.