• Title/Summary/Keyword: Parameter disturbance

Search Result 489, Processing Time 0.025 seconds

Design of PID adaptive control system combining Genetic Algorithms and Neural Network (유전알고리즘과 신경망을 결합한 PID 적응제어 시스템의 설계)

  • 조용갑;박재형;박윤명;서현재;최부귀
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.1
    • /
    • pp.105-111
    • /
    • 1999
  • This Paper is about how to deside the best parameter of PID controller, using Genetic Algorithms and Neural Networks. Control by Genetic Algorithms, which is off-line pass, has weakness for disturbance. So we want to improve like followings by adding Neural Network to controller and putting it on line. First we find PID parameter by Genetic Algorithms in forward pass of Neural Network and set the best output condition according to the increasing number of generation. Second, we explain the adaptability for disturbance with simulation by correcting parameter by backpropagation learning rule by using the learning ability of Neural Network.

  • PDF

Precision Position Control of PMSM using Neural Network Disturbance Observer and Parameter Compensator (신경망 외란관측기와 파라미터 보상기를 이용한 PMSM의 정밀 위치제어)

  • Ko J.S.;Lee T.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.393-397
    • /
    • 2003
  • This paper presents neural load torque observer tha used to deadbeat load torque observer and regulation of the compensation gun by parameter estimator. As a result, the response of PMSM follows that of the nominal plant. The load torque compensation method is compose of a neural deadbeat observer. To reduce of the noise effect, the post-filter, which is implemented by MA process, is adopted. The parameter compensator with RLSM (recursive least square method) parameter estimator is adopted to increase the performance of the load torque observer and main controller. The parameter estimator li combined with a high performance neural torque observer to resolve the problems. As a result, the proposed control system becomes a robust and precise system against the load torque and the parameter variation. A stability and usefulness, through the verified computer simulation, are shown in this paper

  • PDF

Torque Ripple Minimization of PMSM Using Parameter Optimization Based Iterative Learning Control

  • Xia, Changliang;Deng, Weitao;Shi, Tingna;Yan, Yan
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.425-436
    • /
    • 2016
  • In this paper, a parameter optimization based iterative learning control strategy is presented for permanent magnet synchronous motor control. This paper analyzes the mechanism of iterative learning control suppressing PMSM torque ripple and discusses the impact of controller parameters on steady-state and dynamic performance of the system. Based on the analysis, an optimization problem is constructed, and the expression of the optimal controller parameter is obtained to adjust the controller parameter online. Experimental research is carried out on a 5.2kW PMSM. The results show that the parameter optimization based iterative learning control proposed in this paper achieves lower torque ripple during steady-state operation and short regulating time of dynamic response, thus satisfying the demands for both steady state and dynamic performance of the speed regulating system.

Precision Position Control of PMSM using Neural Network Disturbance Observer and Parameter Compensator (신경망 외란관측기와 파라미터 보상기를 이용한 PMSM의 정밀 위치제어)

  • Ko Jong-Sun;Kang Young-Jin;Lee Yong-Jae
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.49-52
    • /
    • 2002
  • This paper presents neural load torque observer that used to deadbeat load torque observer and regulation of the compensation gain by parameter estimator. As a result, the response of PMSM follows that of the nominal plant. The load torque compensation method is compose of a neural deadbeat observer. To reduce of the noise effect, the post-filter, which is implemented by MA process, is adopted. The parameter compensator with RLSM (recursive least square method) parameter estimator is adopted to increase the performance of the load torque observer and main controller. The parameter estimator is combined with a high performance neural torque observer to resolve the problems. As a result, the proposed control system becomes a robust and precise system against the load torque and the parameter variation. A stability and usefulness, through the verified computer simulation, are shown in this paper.

  • PDF

Force Control of one pair of 6-Link Electro-Hydraulic Manipulators (한 쌍의 6축 전기유압 매니퓰레이터의 힘제어)

  • 안경관;조용래;양순용;이병룡
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.353-356
    • /
    • 1997
  • Hydraulically driven manipulators are superior to electrically driven ones in the power density and electrical insulation. But an electro-hydraulic manipulator using hydraulic actuators has many nonlinear elements, and this parameter fluctuations are greater than those of electrically driven manipulator. So this is relatively difficult to realize not only stable contact work but also accurate force control for the autonomous field task such as the maintenance task of high voltage active electric line or the automatic excavation task by hydraulic excavator. In this report, we propose robust force control algorithm, which can be applied to there real field task such as the construction field, nuclear plant and so on. Proposed force controller has the same structure as that of disturbance observe for position control. The difference between force and position disturbance observer is that the input and output of disturbance observer are forces in the case force disturbance observer and the plant varies much compared to the case of position control. In the design of force disturbance observer, generalized plant is derived and the stabilized filter is designed by H infinity control theory to ensure the robuts t stability even though the stiffness of environment changes from sponge to steel, and the contact surface also changes from flat to round shape. Experimental results show that highly robust force tracking by a 6-link electro-hydraulic manipulator could be achieved under various environment conditions.

  • PDF

High Gain Observer-based Robust Tracking Control of LIM for High Performance Automatic Picking System (고성능 자동피킹 시스템을 위한 선형 유도 모터의 고이득 관측기 기반의 강인 추종 제어)

  • Choi, Jung-Hyun;Kim, Jung-Su;Kim, Sanghoon;Yoo, Dong Sang;Kim, Kyeong-Hwa
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.1
    • /
    • pp.7-14
    • /
    • 2015
  • To implement an automatic picking system (APS) in distribution center with high precision and high dynamics, this paper presents a high gain observer-based robust speed controller design for a linear induction motor (LIM) drive. The force disturbance as well as the mechanical parameter variations such as the mass and friction coefficient gives a direct influence on the speed control performance of APS. To guarantee a robust control performance, the system uncertainty caused by the force disturbance and mechanical parameter variations is estimated through a high gain disturbance observer and compensated by a feedforward manner. While a time-varying disturbance due to the mass variation can not be effectively compensated by using the conventional disturbance observer, the proposed scheme shows a robust performance in the presence of such uncertainty. A Simulink library has been developed for the LIM model from the state equation. Through comparative simulations based on Matlab - Simulink, it is proved that the proposed scheme has a robust control nature and is most suitable for APS.

Numerical Study on a Reaction Wheel and Wheel-Disturbance Modeling (반작용휠 및 휠 교란 모델링에 관한 해석적 연구)

  • Kim, Dae-Kwan;Oh, Shi-Hwan;Yong, Ki-Lyuk;Yang, Koon-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.7
    • /
    • pp.702-708
    • /
    • 2010
  • Reaction wheel assemblies(RWA) are expected to be one of the largest high frequency disturbance sources to the optical payload of satellites. To ensure the tight pointing-stability budget and high image quality of satellites, a vibration isolation device should be applied to the main disturbances. For developing the isolating system, the disturbances need to be identified and modeled accurately. In the present study, a modeling technique of RWA and its disturbance was described. The micro-vibration disturbances were generated numerically by using an analytical wheel and disturbance model. The parameter estimation scheme of the model was suggested, and the RWA and disturbance modeling technique was verified through the numerical example analysis. The analytical results show that the wheel and disturbance model can be accurately established by using the modeling technique proposed in the present study. The wheel and disturbance model is expected to be useful for development of the RWA isolator system.

Parameter Identification of an Electro-Hydraulic Servo System Using a Modified Hybrid Neural-Genetic Algorithm (전기.유압 서보시스템의 수정된 신경망-유전자 알고리즘에 의한 파라미터 식별)

  • 곽동훈;이춘태;정봉호;이진걸
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.6
    • /
    • pp.442-447
    • /
    • 2003
  • This paper demonstrates that a modified hybrid neural-genetic multimodel parameter estimation algorithm can be applied to structured system identification of an electro-hydraulic servo system. This algorithm is consists of a recurrent incremental credit assignment(ICRA) neural network and a genetic algorithm. The ICRA neural network evaluates each member of a generation of model and genetic algorithm produces new generation of model. The modified hybrid neural-genetic multimodel parameter estimation algorithm is applied to an electro-hydraulic servo system the task to find the parameter values such as mass, damping coefficient, bulk modulus, spring coefficient and disturbance, which minimizes the total square error.

Parameter Identification of an Electro-Hydraulic Servo System Using an Improved Hybrid Neural-Genetic Multimodel Algorithm (개선된 신경망-유전자 다중모델에 의한 전기.유압 서보시스템의 파라미터 식별)

  • 곽동훈;정봉호;이춘태;이진걸
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.196-203
    • /
    • 2003
  • This paper demonstrates that an improved hybrid neural-genetic multimodel parameter estimation algorithm can be applied to the structured system identification of an electro-hydraulic servo system. This algorithm is consists of a recurrent incremental credit assignment (ICRA) neural network and a genetic algorithm, The ICRA neural network evaluates each member of a generation of model and the genetic algorithm produces new generation of model. We manufactured an electro-hydraulic servo system and the improved hybrid neural-genetic multimodel parameter estimation algorithm is applied to the task to find the parameter values, such as mass, damping coefficient, bulk modulus, spring coefficient and disturbance, which minimize total square error.

PID control with parameter scheduling using fuzzy logic

  • Kwak, Jae-Hyuck;Jeon, Gi-Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.449-454
    • /
    • 1994
  • This paper describes new PID control methods based on the fuzzy logic. PID gains are retuned after evaluating control performances of transient responses in terms of performance features. The retuning procedure is based on fuzzy rules and reasoning accumulated from the knowledge of experts on PID gain scheduling. For the case that the retuned PID gains result in worse CLDR (characteristics of load disturbance rejection) than the initial gains, an on-line tuning scheme of the set-point weighting parameter is, proposed. This is based on the fact that the set-point weighting method efficiently reduce either overshoot or undershoot without any degradation of CLDR. The set-point weighting parameter is adjusted at each sampling instant by the fuzzy rules and reasoning. As a result, better control performances were achived in comparison with die controllers tuned by the Z-N (Ziegler-Nichols) parameter tuning formula or by the fixed set-point weighting parameter.

  • PDF