• 제목/요약/키워드: Parameter Tuning Method

검색결과 282건 처리시간 0.03초

다변수 자기동조 PID 제어기의 설계 (Design of multivariable self tuning PID controllers)

  • 조원철;전기준
    • 전자공학회논문지S
    • /
    • 제34S권7호
    • /
    • pp.66-77
    • /
    • 1997
  • This paper presents an automatic tuning method for parameters of a multivaiable self-tuning velocity-type PID controller which adapts to changes in the system parameters with time delays and noises. The velocity-type PID control structure is determined in the process of minimizing the variance of the auxiliarly output, and self-tuning effect is achieved through the recursive least square algorithm at the parameter estimation stage and also through the Robbins-Monro algorithm at the stage of optiminzing the design parameters of the controller. The proposed PID type multivariable self-tuning method is simple andeffective compared with other esisting multivariable self-tuning methods. Computer simulation has shown that the proposed algorithm is beter than the trial-and-error method in the tracking performance.

  • PDF

Neural Network Tuning of the 2-DOF PID Controller With a Combined 2-DOF Parameter For a Gas Turbine Generating Plant

  • Kim, Dong-Hwa
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제1권1호
    • /
    • pp.95-103
    • /
    • 2001
  • The purpose of Introducing a combined cycle with gas turbine in power plants is to reduce losses of energy, by effectively using exhaust gases from the gas turbine to produce additional electricity or process. The efficiency of a combined power plant with the gas turbine increases, exceeding 50%, while the efficiency of traditional steam turbine plants is approximately 35% to 40%. Up to the present time, the PID controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain without any experience, since the gain of the PID controller has to be manually tuned by trial and error procedures. This paper focuses on the neural network tuning of the 2-DOF PID controller with a combined 2-DOF parameter (NN-Tuning 2-DOF PID controller), for optimal control of the Gun-san gas turbine generating plant in Seoul, Korea. In order to attain optimal control, transfer function and operating data from start-up, running, and stop procedures of the Gun-san gas turbine have been acquired and a designed controller has been applied to this system. The results of the NN-Tuning 2-DOF PID are compared with the PID controller and the conventional 2-DOF PID controller tuned by the Ziegler-Nichols method through experimentation. The experimental results of the NN-Tuning 2-DOF PID controller represent a more satisfactory response than those of the previously-mentioned two controllers.

  • PDF

Design of RCGA-based PID controller for two-input two-output system

  • Lee, Yun-Hyung;Kwon, Seok-Kyung;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권10호
    • /
    • pp.1031-1036
    • /
    • 2015
  • Proportional-integral-derivative (PID) controllers are widely used in industrial sites. Most tuning methods for PID controllers use an empirical and experimental approach; thus, the experience and intuition of a designer greatly affect the tuning of the controller. The representative methods include the closed-loop tuning method of Ziegler-Nichols (Z-N), the C-C tuning method, and the Internal Model Control tuning method. There has been considerable research on the tuning of PID controllers for single-input single-output systems but very little for multi-input multi-output systems. It is more difficult to design PID controllers for multi-input multi-output systems than for single-input single-output systems because there are interactive control loops that affect each other. This paper presents a tuning method for the PID controller for a two-input two-output system. The proposed method uses a real-coded genetic algorithm (RCGA) as an optimization tool, which optimizes the PID controller parameters for minimizing the given objective function. Three types of objective functions are selected for the RCGA, and each PID controller parameter is determined accordingly. The performance of the proposed method is compared with that of the Z-N method, and the validity of the proposed method is examined.

Self-tuning optimal control of an active suspension using a neural network

  • Lee, Byung-Yun;Kim, Wan-Il;Won, Sangchul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.295-298
    • /
    • 1996
  • In this paper, a self-tuning optimal control algorithm is proposed to retain the optimal performance of an active suspension system, when the vehicle has some time varying parameters and parameter uncertainties. We consider a 2 DOF time-varying quarter car model which has the parameter variation of sprung mass, suspension spring constant and suspension damping constant. Instead of solving algebraic riccati equation on line, we propose a neural network approach as an alternative. The optimal feedback gains obtained from the off line computation, according to parameter variations, are used as the neural network training data. When the active suspension system is on, the parameters are identified by the recursive least square method and the trained neural network controller designer finds the proper optimal feedback gains. The simulation results are represented and discussed.

  • PDF

An alternative method for estimating lognormal means

  • Kwon, Yeil
    • Communications for Statistical Applications and Methods
    • /
    • 제28권4호
    • /
    • pp.351-368
    • /
    • 2021
  • For a probabilistic model with positively skewed data, a lognormal distribution is one of the key distributions that play a critical role. Several lognormal models can be found in various areas, such as medical science, engineering, and finance. In this paper, we propose a new estimator for a lognormal mean and depict the performance of the proposed estimator in terms of the relative mean squared error (RMSE) compared with Shen's estimator (Shen et al., 2006), which is considered the best estimator among the existing methods. The proposed estimator includes a tuning parameter. By finding the optimal value of the tuning parameter, we can improve the average performance of the proposed estimator over the typical range of σ2. The bias reduction of the proposed estimator tends to exceed the increased variance, and it results in a smaller RMSE than Shen's estimator. A numerical study reveals that the proposed estimator has performance comparable with Shen's estimator when σ2 is small and exhibits a meaningful decrease in the RMSE under moderate and large σ2 values.

SVC계통의 안정도 향상을 위한 파라미터 자기조정 퍼지제어기의 설계 (A Design of Parameter Self Tuning Fuzzy Controller to Improve Power System Stabilization with SVC System)

  • 주석민
    • 조명전기설비학회논문지
    • /
    • 제23권2호
    • /
    • pp.175-181
    • /
    • 2009
  • 본 논문에서는 전력계통의 안정도를 향상시키기 위하여 동기 발전기와 정지형 무효전력 보상기에 대한 파라미터 자기조정 퍼지제어기의 설계 기법을 제시한다. 제안된 퍼지제어기의 파라미터 자기조정 알고리즘은 퍼지제어기의 추론값과 전력계통안정화 장치의 출력값들 사이의 오차를 감소시키는 두 개의 방향 벡터를 사용하는 최급강하법에 기초를 둔다. 전력계통안정화 장치로부터 얻어진 입 출력 데이터쌍을 사용하여, 퍼지추론 규칙의 전건부와 후건부에서의 파라미터들은 제안된 최급강하법에 의해 자동조정되고 학습되어진다. 시뮬레이션 결과, 제안된 퍼지제어기가 종래의 제어기보다 우수한 제어성능을 보임을 확인하였다.

벡터제어 유도전동기의 자기동조 퍼지 속도제어 기법 (A Self-Tuning Fuzzy Speed Control Method for an Induction Motor)

  • 김동신;한우용;이창구;김성중
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 B
    • /
    • pp.1111-1113
    • /
    • 2003
  • This paper proposes an effective self-turning algorithm based on Artificial Neural Network (ANN) for fuzzy speed control of the indirect vector controlled induction motor. Indirect vector control method divides and controls stator current by the flux and the torque producing current so that the dynamic characteristic of induction motor may be superior. However, if motor parameter changes, the flux current and the torque producing one's coupling happens and deteriorates the dynamic characteristic. The fuzzy speed controller of an induction motor has the robustness over the effect of this parameter variation than a conventional PI speed controller in some degree. This paper improves its adaptability by adding the self-tuning mechanism to the fuzzy controller. For tracking the speed command, its membership functions are adjusted using ANN adaptation mechanism. This adaptability could be embodied by moving the center positions of the membership functions. Proposed self-tuning method has wide adaptability than existent fuzzy controller or PI controller and is proved robust about parameter variation through Matlab/Simulink simulation.

  • PDF

대형 화력발전소 EX2000 여자시스템 PSS 튜닝 : Part 1- 최적 PSS 파라메터 설계 (PSS Tuning of EX2000 Excitation System in Thermal Plant: Part I- Optimal PSS Parameter Design)

  • 김동준;문영환;김성민;김진이;황봉환;조종만
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.13-14
    • /
    • 2008
  • This paper describes the optimal PSS parameter design for the PSS of EX2000 excitation system. The suggested tuning technique uses the model-based PSS tuning method which have three steps: generation system modeling, determination of PSS parameters, and on-site test. Using this method, the PSS parameters of EX2000 system in Dangjin T/P #4 was designed and verified by linear analysis program, PSS/E, and EMTDC/PSCAD.

  • PDF

리니어 펄스모터의 부하변동에 따른 일정추력 퍼지 강인제어 (Fuzzy Robust Control with Constant Thrust Force on Load Variation for Linear Pulse Motor)

  • 배동관;김광헌;박현수
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2002년도 추계학술대회 논문집
    • /
    • pp.40-44
    • /
    • 2002
  • In this paper, robust control method using fuzzy PI parameter tuning is proposed to control constant thrust force on load variation. First, a structure and thrust force equations of the LPM are described. Second, an controller with PI parameter-tuning using a fuzzy theory is proposed to achieve high-precision position with constant thrust force of the LPM. Finally, the effectiveness of an fuzzy PI controller is demonstrated by some simulated and experimental results. Accurate tracking response and superior dynamic performance can be obtained due to the powerful on-line Fuzzy PI gain tuning method with regard parametric variations and load thrust force variations.

  • PDF

신경회로망을 이용한 직접 자기동조제어기의 설계 (Design of a Direct Self-tuning Controller Using Neural Network)

  • 조원철;이인수
    • 전자공학회논문지SC
    • /
    • 제40권4호
    • /
    • pp.264-274
    • /
    • 2003
  • 본 논문에서는 잡음과 시간지연이 존재하며 시스템 파라미터가 변하는 비선형 비최소위상 시스템에 적응하는 신경회로망이 결합된 PID구조를 갖는 일반화 최소분산 자기동조제어기를 제안한다. PID구조를 갖는 자기동조는 PID제어기처럼 구조가 간단하고 계통을 정밀하게 제어하는 자기동조 제어기의 특성을 그대로 유지할 수 있다. 일반화 최소분산 자기동조 제어기 파라미터는 비선형 시스템을 선형시스템으로 간주하고 순환최소자승법으로 추정하며 설계계수의 값은 확률근사법인 Robbins-Monro 알고리듬을 이용하여 자동조정하였다. 역전파 학습 알고리듬을 사용하는 신경회로망 제어기는 비선형 부분의 제어를 보상하기 위해 필터된 기준입력과 필터된 플랜트 출력이 같도록 제어값을 출력한다. 컴퓨터 시뮬레이션을 통해 제안한 방법이 시스템의 파라미터가 변하는 비최소위상 시스템에 잘 적응함을 보였다.