• Title/Summary/Keyword: Parameter Space

Search Result 1,348, Processing Time 0.023 seconds

Bayes and Sequential Estimation in Hilbert Space Valued Stochastic Differential Equations

  • Bishwal, J.P.N.
    • Journal of the Korean Statistical Society
    • /
    • v.28 no.1
    • /
    • pp.93-106
    • /
    • 1999
  • In this paper we consider estimation of a real valued parameter in the drift coefficient of a Hilbert space valued Ito stochastic differential equation. First we consider observation of the corresponding diffusion in a fixed time interval [0, T] and prove the Bernstein - von Mises theorem concerning the convergence of posterior distribution of the parameter given the observation, suitably normalised and centered at the MLE, to the normal distribution as Tlongrightarrow$\infty$. As a consequence, the Bayes estimator of the drift parameter becomes asymptotically efficient and asymptotically equivalent to the MLE as Tlongrightarrow$\infty$. Next, we consider observation in a random time interval where the random time is determined by a predetermined level of precision. We show that the sequential MLE is better than the ordinary MLE in the sense that the former is unbiased, uniformly normally distributed and efficient but is latter is not so.

  • PDF

A study on the Hough Transform by using Multi-Resolution technique (다 해상도 기법에 의한 Hough 변환에 관한 연구)

  • Kim, Han-Young;Youn, Sei-Jin;Woo, Dong-Min
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2234-2236
    • /
    • 1998
  • In this paper, we propose a new algorithm based on multi-resolution application of the parameter space to the Hough transform technique. The existing Hough transform technique employs mapping of fixed parameter space in order to extract straight lines from image. One of the difficulties of the existing Hough transform technique lies in the detection of multiple adjacent lines for only one line. Increasing the parameter space from the low level resolution to the high level resolution, our algorithm detects straight line in a stable and efficient fashion. Experimental results are included to verity the performance of proposed algorithm.

  • PDF

Relationship between Coronal Mass Ejections Eccentricity parameter and the strength of geomagnetic storm

  • Rho, Su-Lyun;Chang, Heon-Young;Moon, Yong-Jae
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.24.1-24.1
    • /
    • 2008
  • We examine the eccentricity parameter (EP) of Coronal Mass Ejections (CMEs). For this, we select 298 front-side CMEs from SOHO LASCO CMEs whose speed is larger than 1000km/s and angular width is greater than $120^{\circ}$ during from 1997 to 2007. These are thought to be the most plausible candidate of geoeffective CMEs. We examine the relation between CMEs eccentricity parameter and the minimum value of the Dst index. We find that strong geomagnetic storms (Dst < -200nT) are well correlated with the EP from the scattered plot. We also find that CMEs have high geoeffectiveness when they occurred near the center of the solar disk with the small EP and they have the small speed with the small EP. These results indicate that the CME EP also can be an important indicator to forecast CME geoeffectiveness such as Earthward direction parameter (Moon et al. 2005, Kim et al. 2008).

  • PDF

Analysis of thermally induced vibration of cable-beam structures

  • Deng, Han-Qing;Li, Tuan-Jie;Xue, Bi-Jie;Wang, Zuo-Wei
    • Structural Engineering and Mechanics
    • /
    • v.53 no.3
    • /
    • pp.443-453
    • /
    • 2015
  • Cable-beam structures characterized by variable stiffness nonlinearities are widely found in various structural engineering applications, for example in space deployable structures. Space deployable structures in orbit experience both high temperature caused by sun's radiation and low temperature by Earth's umbral shadow. The space temperature difference is above 300K at the moment of exiting or entering Earth's umbral shadow, which results in structural thermally induced vibration. To understand the thermally induced oscillations, the analytical expression of Boley parameter of cable-beam structures is firstly deduced. Then, the thermally induced vibration of cable-beam structures is analyzed using finite element method to verify the effectiveness of Boley parameter. Finally, by analyzing the obtained numerical results and the corresponding Boley parameters, it can be concluded that the derived expression of Boley parameter is valid to evaluate the occurrence conditions of thermally induced vibration of cable-beam structures and the key parameters influencing structural thermal flutter are the cable stiffness and thickness of beams.

Edge-Preserving Iterative Reconstruction in Transmission Tomography Using Space-Variant Smoothing (투과 단층촬영에서 공간가변 평활화를 사용한 경계보존 반복연산 재구성)

  • Jung, Ji Eun;Ren, Xue;Lee, Soo-Jin
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.5
    • /
    • pp.219-226
    • /
    • 2017
  • Penalized-likelihood (PL) reconstruction methods for transmission tomography are known to provide improved image quality for reduced dose level by efficiently smoothing out noise while preserving edges. Unfortunately, however, most of the edge-preserving penalty functions used in conventional PL methods contain at least one free parameter which controls the shape of a non-quadratic penalty function to adjust the sensitivity of edge preservation. In this work, to avoid difficulties in finding a proper value of the free parameter involved in a non-quadratic penalty function, we propose a new adaptive method of space-variant smoothing with a simple quadratic penalty function. In this method, the smoothing parameter is adaptively selected for each pixel location at each iteration by using the image roughness measured by a pixel-wise standard deviation image calculated from the previous iteration. The experimental results demonstrate that our new method not only preserves edges, but also suppresses noise well in monotonic regions without requiring additional processes to select free parameters that may otherwise be included in a non-quadratic penalty function.

Robot Control Method in Parameter Space Adopting Biomimetics (생체모방기술을 접목한 파라미터 공간에서의 로봇제어 기법)

  • Kim, Heejoong
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.5
    • /
    • pp.16-23
    • /
    • 2018
  • In the paper, a robot control technique by employing Biomimetics is described. Rhythmic movements of the diving beetle's leg were analyzed and the formulated equations on the motion were drawn by applying Fourier least mean square fitting method. Simple control parameters were defined by comparing the observed locomotion through a motion capture system and reproduced motions according to changes in the values in the equation. Subsequently, the correlation of each parameter was discovered and expressed in a parameter space. Apparently, it was confirmed that various bio-mimicking motions can simply be generated for controlling the robot. Additionally, robot designing based on adopting structural advantages which the living organism possess have been briefly introduced. The proposed bio-mimicking motion generating technique was observed to be applicable to robot system developments under various environmental conditions.

OPTIMAL FORMATION TRAJECTORY-PLANNING USING PARAMETER OPTIMIZATION TECHNIQUE

  • Lim, Hyung-Chul;Bang, Hyo-Choong;Park, Kwan-Dong;Lee, Woo-Kyoung
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.3
    • /
    • pp.209-220
    • /
    • 2004
  • Some methods have been presented to get optimal formation trajectories in the step of configuration or reconfiguration, which subject to constraints of collision avoidance and final configuration. In this study, a method for optimal formation trajectory-planning is introduced in view of fuel/time minimization using parameter optimization technique which has not been applied to optimal trajectory-planning for satellite formation flying. New constraints of nonlinear equality are derived for final configuration and constraints of nonlinear inequality are used for collision avoidance. The final configuration constraints are that three or more satellites should be placed in an equilateral polygon of the circular horizontal plane orbit. Several examples are given to get optimal trajectories based on the parameter optimization problem which subjects to constraints of collision avoidance and final configuration. They show that the introduced method for trajectory-planning is well suited to trajectory design problems of formation flying missions.

Correlation Between Drilling Parameter and Tunnel Support Pattern Using Jumbo Drill (도로터널에서 지보패턴별 굴착지수 상관관계 고찰)

  • Kim, Nag-Young;Kim, Sung-Hwan;Chung, Hyung-Sik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.3 no.4
    • /
    • pp.17-24
    • /
    • 2001
  • Four road tunnels of which the construction conditions were similar were selected in the paper, and laboratory tests and rockmass classification for the tunnels were carried out. And the analysis was performed to find out the correlation between ratio of bit abrasion or drilling parameter and support pattern of tunnel using jumbo drill machine. It was analyzed that there was average abrasion of bit from 11.85% to 3.25% per support patterns of tunnel in four tunnels. Drilling parameter happens to fluctuate according to extent of fracture zone.

  • PDF

Parameter convergence properties for MRAC system with a constant reference signal tracking (일정한 기준신호를 추적하는 MRAC시스템에 대한 파라미터 수렴특성)

  • 민병태;김성덕;양해원
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.13 no.1
    • /
    • pp.1-11
    • /
    • 1988
  • In this paper, the boundedness of adjustable parameters for the model reference adaptive control(MRAC) system using a constant reference signal is discussed. This analysis is motivated by that it is possibel to verify the existence, boundedness and bounded range of the parameter as well as the stability of the adaptive system with an alternative propoerty of Lyapunov function. For two adaptive laws; a general gradient mothod(GGM) and a least square method(LSM), unique solution set in parameter space can be estabilished by a new approach suggeste here. Computer simulation results to show the effect of parameter space analysis are also examined.

  • PDF

Impedance Parameter Update Method for Dual-arm Manipulator based on Operator's Muscle Activation (조작자 근육 활성도 기반 양팔 로봇의 임피던스 제어 파라미터 갱신 방법)

  • Baek, Chanryul;Cha, Gwangyeol;Kim, Junsik;Choi, Youngjin
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.347-352
    • /
    • 2022
  • The paper presents how to update impedance control parameters for dual-arm manipulators using EMG signals and motions of the operator. Since the hand motions of the dual-arm are modeled to be the mass-spring-damper system in this paper, the impedance parameter update method is an important issue to reflect the operator's force. However, task space inertia to be used as the mass parameter goes to infinity if the manipulator approaches a kinematic singularity. To alleviate this issue, the impedance (stiffness and damping) parameters are divided with a diagonal element of the task space inertia. Also, the stiffness and damping matrices are updated using the normalized EMG signals captured from the operator's forearm. Through this process, the motion of the dual-arm manipulator is more stabilized even though it approaches the kinematic singularity.