• Title/Summary/Keyword: Parameter Calibration

Search Result 412, Processing Time 0.028 seconds

Robust Semi-auto Calibration Method for Various Cameras and Illumination Changes (다양한 카메라와 조명의 변화에 강건한 반자동 카메라 캘리브레이션 방법)

  • Shin, Dong-Won;Ho, Yo-Sung
    • Journal of Broadcast Engineering
    • /
    • v.21 no.1
    • /
    • pp.36-42
    • /
    • 2016
  • Recently, many 3D contents have been produced through the multiview camera system. In this system, since a difference of the viewpoint between color and depth cameras is inevitable, the camera parameter plays the important role to adjust the viewpoint as a preprocessing step. The conventional camera calibration method is inconvenient to users since we need to choose pattern features manually after capturing a planar chessboard with various poses. Therefore, we propose a semi-auto camera calibration method using a circular sampling and an homography estimation. Firstly, The proposed method extracts the candidates of the pattern features from the images by FAST corner detector. Next, we reduce the amount of the candidates by the circular sampling and obtain the complete point cloud by the homography estimation. Lastly, we compute the accurate position having the sub-pixel accuracy of the pattern features by the approximation of the hyper parabola surface. We investigated which factor affects the result of the pattern feature detection at each step. Compared to the conventional method, we found the proposed method released the inconvenience of the manual operation but maintained the accuracy of the camera parameters.

Calibration of a UAV Based Low Altitude Multi-sensor Photogrammetric System (UAV기반 저고도 멀티센서 사진측량 시스템의 캘리브레이션)

  • Lee, Ji-Hun;Choi, Kyoung-Ah;Lee, Im-Pyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.1
    • /
    • pp.31-38
    • /
    • 2012
  • The geo-referencing accuracy of the images acquired by a UAV based multi-sensor system is affected by the accuracy of the mounting parameters involving the relationship between a camera and a GPS/INS system as well as the performance of a GPS/INS system. Therefore, the estimation of the accurate mounting parameters of a multi-sensor system is important. Currently, we are developing a low altitude multi-sensor system based on a UAV, which can monitor target areas in real time for rapid responses for emergency situations such as natural disasters and accidents. In this study, we suggest a system calibration method for the estimation of the mounting parameters of a multi-sensor system like our system. We also generate simulation data with the sensor specifications of our system, and derive an effective flight configuration and the number of ground control points for accurate and efficient system calibration by applying the proposed method to the simulated data. The experimental results indicate that the proposed method can estimate accurate mounting parameters using over five ground control points and flight configuration composed of six strips. In the near future, we plan to estimate mounting parameters of our system using the proposed method and evaluate the geo-referencing accuracy of the acquired sensory data.

Two-Port Vector Network Analysis System with a Vector Signal Channel (벡터 전압 수신기를 이용한 2-포트 산란 계수 분석 시스템)

  • Lee, Dong-Joon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.5
    • /
    • pp.541-548
    • /
    • 2013
  • This paper presents a vector network analysis system for 2-port scattering parameters of microwave devices using some basic microwave instruments/devices such as signal generators, vector voltmeter, directional couplers and frequency mixers. The analytical model and implementation method for scattering parameter measurements - which can replace the vector network analyzers - are presented. The performance of the implemented system is evaluated through 1- and 2-port scattering parameter measurements, respectively. The vector volt signals which determine the scattering parameters are detected in two distinct methods depending on the frequency band of interests; a direct-detection method with a single signal generator and vector voltmeter for relatively low band and a heterodyne method to frequency down-mix associated with an additional signal source as well as frequency mixers for high band are used, respectively. Using these two methods, scattering parameters of UHF and X bands are evaluated and their performances are verified through a comercial vector network analyzer.

Effect of Stress History on CPT-DMT Correlations in Granular Soil (응력이력이 사질토의 CPT-DMT 상관관계에 미치는 영향)

  • Lee, Moon-Joo;Choi, Sung-Kun;Kim, Min-Tae;Lee, Ju-Hyeong;Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.730-739
    • /
    • 2010
  • Stress history increases in penetration resistance due to the increase in residual horizontal stress of granular soil. This study analyzes the effect of stress history on the results of CPT and DMT from calibration chamber specimen in OC as well as NC state. Test results show that the normalized cone resistance by mean effective stress correlates well with the relative density and the state parameter, whereas the normalized cone resistance with regard to vertical effective stress is a little affected by stress history. The horizontal stress index($K_D$) in DMT more reflects the influence of stress history on granular soil than the dilatometer modulus($E_D$) and cone resistance($q_c$). The $K_D/K_0$, in which the effect of stress history on $K_D$ is compensated by the at-rest coefficient of earth pressure, $K_0$, is related to relative density, state parameter and the normalized cone resistance by mean effective stress. It is also observed that the normalized dilatometer modulus by mean effective stress($E_D/{\sigma_m}'$) is unique correlated with the state parameter, regardless of stress history.

  • PDF

A Development of Hourly Rainfall Simulation Technique Based on Bayesian MBLRP Model (Bayesian MBLRP 모형을 이용한 시간강수량 모의 기법 개발)

  • Kim, Jang Gyeong;Kwon, Hyun Han;Kim, Dong Kyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.821-831
    • /
    • 2014
  • Stochastic rainfall generators or stochastic simulation have been widely employed to generate synthetic rainfall sequences which can be used in hydrologic models as inputs. The calibration of Poisson cluster stochastic rainfall generator (e.g. Modified Bartlett-Lewis Rectangular Pulse, MBLRP) is seriously affected by local minima that is usually estimated from the local optimization algorithm. In this regard, global optimization techniques such as particle swarm optimization and shuffled complex evolution algorithm have been proposed to better estimate the parameters. Although the global search algorithm is designed to avoid the local minima, reliable parameter estimation of MBLRP model is not always feasible especially in a limited parameter space. In addition, uncertainty associated with parameters in the MBLRP rainfall generator has not been properly addressed yet. In this sense, this study aims to develop and test a Bayesian model based parameter estimation method for the MBLRP rainfall generator that allow us to derive the posterior distribution of the model parameters. It was found that the HBM based MBLRP model showed better performance in terms of reproducing rainfall statistic and underlying distribution of hourly rainfall series.

Parameter and Modeling Uncertainty Analysis of Semi-Distributed Hydrological Model using Markov-Chain Monte Carlo Technique (Markov-Chain Monte Carlo 기법을 이용한 준 분포형 수문모형의 매개변수 및 모형 불확실성 분석)

  • Choi, Jeonghyeon;Jang, Suhyung;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.5
    • /
    • pp.373-384
    • /
    • 2020
  • Hydrological models are based on a combination of parameters that describe the hydrological characteristics and processes within a watershed. For this reason, the model performance and accuracy are highly dependent on the parameters. However, model uncertainties caused by parameters with stochastic characteristics need to be considered. As a follow-up to the study conducted by Choi et al (2020), who developed a relatively simple semi-distributed hydrological model, we propose a tool to estimate the posterior distribution of model parameters using the Metropolis-Hastings algorithm, a type of Markov-Chain Monte Carlo technique, and analyze the uncertainty of model parameters and simulated stream flow. In addition, the uncertainty caused by the parameters of each version is investigated using the lumped and semi-distributed versions of the applied model to the Hapcheon Dam watershed. The results suggest that the uncertainty of the semi-distributed model parameters was relatively higher than that of the lumped model parameters because the spatial variability of input data such as geomorphological and hydrometeorological parameters was inherent to the posterior distribution of the semi-distributed model parameters. Meanwhile, no significant difference existed between the two models in terms of uncertainty of the simulation outputs. The statistical goodness of fit of the simulated stream flows against the observed stream flows showed satisfactory reliability in both the semi-distributed and the lumped models, but the seasonality of the stream flow was reproduced relatively better by the distributed model.

Development of a Current-Type Electromagnetic Flowmeter to Obtain the Liquid Mean Velocity in Two-Phase Slug Flow (슬러그류 액상속도 측정용 전류형식 전자기유량계 개발)

  • Kang, Deok-Hong;Ahn, Yeh-Chan;Kim, Jong-Rok;Oh, Byung-Do;Kim, Moo-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1951-1956
    • /
    • 2004
  • The transient nature and complex flow geometries of two-phase gas-liquid flows cause fundamental difficulties when measuring flow velocity using an electromagnetic flowmeter. Recently, a current-sensing flowmeter was introduced to obtain measurements with high temporal resolution (Ahn et $al.^{(1)}$). In this study, current-sensing flowmeter theory was applied to measure the fast velocity transients in slug flows. To do this, the velocity fields of axisymmetric gas-liquid slug flow in a vertical pipe were obtained using Volume-of-Fluid (VOF) method and the virtual potential distributions for the electrodes of finite size were also computed using the finite volume method for the simulated slug flow. The output signal prediction for slug flow was carried out from the velocity and virtual potential (or weight function) fields. The flowmeter was numerically calibrated to obtain the cross-sectional liquid mean velocity at an electrode plane from the predicted output signal. Two calibration parameters are required for this procedure: a flow pattern coefficient and a localization parameter. The flow pattern coefficient was defined by the ratio of the liquid resistance between the electrodes for two-phase flow with respect to that for single-phase flow, and the localization parameter was introduced to avoid errors in the flowmeter readings caused by liquid acceleration or deceleration around the electrodes. These parameters were also calculated from the computed velocity and virtual potential fields. The results can be used to obtain the liquid mean velocity from the slug flow signal measured by a current-sensing flowmeter.

  • PDF

A study of sea level measurement using GPS buoy (GPS 부의를 이용한 해수면 관측에 관한 연구)

  • Park, Un-Yong;Oh, Chang-Soo;Lee, Dong-Rak;Hong, Jung-Soo
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.85-88
    • /
    • 2007
  • Sea level fluctuation present a direct influence to those who live near the coast. The importance of monitoring sea level is evident. Therefore, various techniques have been employed for sea level measurements such as the coastal water level gauges, satellite altimetry and GPS buoy. Especially, GPS buoys have been used to measure water levels, atmospheric parameter and other physical conditions in sea, tide correction, the altimeter range calibration, ocean environment. In this paper, we will mainly concentrate on the kinematic technique for GPS buoy to measure the sea level. A test was carried out to test the method proposed in this paper, which made use of a GPS buoy equipped to monitor the sea level in Busan. We have executed to analysis about applications of GPS buoy.

  • PDF

Chemical Distributions of Carbon-Enhanced Metal-Poor (CEMP) Stars from the Baryon Oscillations Spectroscopic Survey (BOSS)

  • Lee, Young Sun;Beers, Timothy C.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.80.2-80.2
    • /
    • 2015
  • We present spatial and chemical distributions of Carbon-Enhanced Metal-Poor (CEMP) stars in the Milky Way's halo, as observed by the Baryon Oscillation Spectroscopic Survey (BOSS). Although the BOSS was designed to obtain spectra of galaxies and quasars, it also observed numerous metal-poor main-sequence turnoff stars for the purpose of flux calibration. The stars observed in the BOSS are two magnitudes fainter (15.5 < g < 19.2) than those in the legacy SDSS, thus it is an extremely useful sample to probe the distant halo. Using effective temperatures, surface gravities, [Fe/H], and [C/Fe] derived for these stars by the SEGUE Stellar Parameter Pipeline (SSPP), we investigate the spatial distribution of [Fe/H] and [C/Fe], the distribution of [C/Fe], and frequency of CEMP stars among these stars. These tools enable characterization of the origin of the halo and its initial mass function.

  • PDF

Manning's n Calibration and Sensitivity Analysis using Unsteady Flood Routing Model (부정류 모형을 이용한 하천 조도계수 산정 및 산정오차의 수면곡선에 대한 민감도 분석)

  • Kim, Sun-Min;Jung, Kwan-Sue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.324-328
    • /
    • 2005
  • This study is to figure out uncertainty relationship between input data and calibrated parameter on unsteady hydraulic routing model. The uncertainty would be present to model results as a variant water surface profile along the channel. Firstly, Manning's n is calibrated through the model with assumed uncertainty on input hydrograph. Then, spatially distributed n-values sets based on the calibrated n values are used to get water profile of each n-values set. The results show that ${\pm}0.002$ of error in Manning's n cause ${\pm}30cm$ of maximum water surface differences at the Sumjin river.

  • PDF