• Title/Summary/Keyword: Paramagnetic

Search Result 360, Processing Time 0.025 seconds

A Study on Magnetic Properties of $Ni_{1-x}Zn_{x}Fe_{2}O_{4}(0{\leq}x{\leq}1)$ Ferrrite ($Ni_{1-x}Zn_{x}Fe_{2}O_{4}(0{\leq}x{\leq}1)$ Ferrrite의 자기적 성질 연구)

  • 조익한;양재석;김응찬;강신규
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.6
    • /
    • pp.397-404
    • /
    • 1996
  • The magnetic properties of $Ni_{1-x}Zn_{x}Fe_{2}O_{4}$ have been studied by X-ray diffractometry and $M\"{o}ssbauer$ Spectroscopy at room temperature. The X-ray diffraction study show that spinel structure is formed in all x, lattice constants linearly increased from $8.3111{$\AA$}~8.4184{$\AA$}({\pm}0.0003)$ with increasing x from 0 to 1, and oxygen parameter increase with increasing x. $M\"{o}ssbauer$ spectrum shows that $Ni_{1-x}Zn_{x}Fe_{2}O_{4}(x=0)$ has two antiparallel magnetic structure due to $Fe^{3+}$ octahedral site and $Fe^{3+}$ tetrahedral site. $Ni_{1-x}Zn_{x}Fe_{2}O_{4}$ with $0.2{\leq}x{\leq}0.6$ has magnetic structure of Yafet and Kittel, in particularly, specimen with x=0.6 shows relaxation effect. Specimen with $x{\geq}0.8$ show paramagnetic quadrupole splitting. The isomer shift is independent of x, but quadrupole splittings decrease with increasing x in the range of $0.8{\leq}x{\leq}1$, and nuclear magnetic fields decrease with in¬creasing x in the range of $0{\leq}x{\leq}0.6$. The magnetic properties of $Ni_{1-x}Zn_{x}Fe_{2}O_{4}$ change from ferrimagnetics to pararnagnetics with increasing x.

  • PDF

Studies on Crystallographic and Mossbauer Spectra of the LiFe0.9Mn0.1PO4 (LiFe0.9Mn0.1PO4 물질의 결정구조 및 뫼스바우어 분광 연구)

  • Kwon, Woo-Jun;Lee, In-Kyu;Rhee, Chan-Hyuk;Kim, Sam-Jin;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.1
    • /
    • pp.15-18
    • /
    • 2012
  • The olivine structured $LiFe_{0.9}Mn_{0.1}PO_4$ material was prepared by solid state method, and was analyzed by x-ray diffractometer (XRD), superconducting quantum interference devices (SQUID) and Mossbauer spectroscopy. The crystal structure of $LiFe_{0.9}Mn_{0.1}PO_4$ was determined to be orthorhombic (space group: Pnma) by Rietveld refinement method. The value of N$\acute{e}$el temperature ($T_N$) for $LiFe_{0.9}Mn_{0.1}PO_4$ was determined 50 K. The temperature dependence of the magnetization curves showed magnetic phase transition from paramagnetic to antiferromagnetic at $T_N$ by SQUID measurement. M$\ddot{o}$ssbauer spectra of $LiFe_{0.9}Mn_{0.1}PO_4$ showed 2 absorption lines at temperatures above $T_N$ and showed asymmetric 8 absorption lines at temperatures below $T_N$. These spectra occurred due to the magnetic dipole and electric quardrupole interaction caused by strong crystalline field at asymmetric $FeO_6$ octahedral sites.

Magnetoresistance Effects in Cr5S6 Single Crystal (Cr5S6 단결정의 자기저항 효과)

  • Lee, Kyung-Dong;Song, Ki-Myung;Hur, Nam-Jung
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.6
    • /
    • pp.207-211
    • /
    • 2010
  • We have investigated the magnetoresistance effect in $Cr_5S_6$ single crystals prepared by vapor transport method. Room temperature X-ray diffraction (XRD) study reveals the phase formation of the single crystals with trigonal crystal structure. The magnetization was measured as a function of temperature (5 K~400 K) and applied magnetic field (0.1 T and 5 T). The magnetization curve as a function of temperature reveals the two transition states of $Cr_5S_6$: one from antiferromagnetic to ferrimagnetic state at ~150 K and the other from ferrimagnetic to paramagnetic state at ~300 K. Temperature dependent resistivity at 0 T and 5 T magnetic field shows the metallic behavior, showing the transition from antiferromagnetic to ferrimagnetic state at ~150 K. Magnetic field dependence of magnetization was measured at four fixed temperatures viz. 100 K, 150 K, 200 K, and 300 K. It is observed that at 200 K and 300 K it shows well M-H hysteresis behavior, whereas at 100 K and 150 K it shows non-hysteretic nature. A negative magnetoresistance (MR) of -2% is observed at 5 T for $Cr_5S_6$ single crystal at 150 K, near the antiferromagnetic transition temperature.

Synthesis and Characterization of UO2(VI), Th(IV), ZrO(IV) and VO(IV) Complexes with Schiff-Base Octaazamacrocyclic Ligands (Schiff-염기인 옥타아자-거대고리 리간드의 UO2(VI), Th(IV), ZrO(IV) 및 VO(IV) 착물 합성 및 특성)

  • Mohapatra, Ranjan Kumar;Dash, Dhruba Charan
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.4
    • /
    • pp.395-401
    • /
    • 2010
  • A series of macrocyclic complexes of the type [M(L/L')$(NO_3)_n$].$mH_2O$ and [VO(L/L')($SO_4$)].$2H_2O$, where L/L' is a Schiff base "3,4,10,11-tetraphenyl/tetramethyl-1,2,5,6,8,9,12,13-octaaza cyclotetradeca-2,4,9,11-tetraene-7,14-dithione" derived from thiocarbohydrazide (TCH), benzilmonohydrazone (BMH)/diacetylmonohydrazone (DMH) and carbon disulphide, M = $UO_2$ (VI), Th(IV) and ZrO(IV), n = 2, 4, m = 2, 3, have been synthesized via metal ion template methods. The complexes are characterized on the basis of elemental analysis, thermal analysis, molar conductivity, magnetic moment, electronic, infrared and $^1H$-NMR spectral studies. The ESR and cyclic voltammetry studies of the vanadyl complexes have been carried out. The results indicate that the VO(IV) ion is penta-coordinated yielding paramagnetic complexes; $UO_2$(VI) and ZrO(IV) ions are hexacoordinated where as Th(IV) ion is octa-coordinated yielding diamagnetic complexes of above composition.

New Magnetic Phases of Fe-N and Mn-Al Alloys Produced by Mechanochemical Milling (기계적 밀링 및 화학적 추출법에 의해 제조한 Fe-N 및 Mn-Al계의 새로운 자성재료)

  • Kyu-Jin Kim;Tae-Hwan Noh;Kenji Suzuki
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.4
    • /
    • pp.347-354
    • /
    • 1994
  • The structural change and magnetic properties of mechanically milled Fe-N and Mn-Al alloy powders have been investigated by XRD, TEM, VSM, $M\"{o}ssbauer$ spectroscopy and inelastic neutron scattering measurements. During milling of ${\gamma}'-Fe_{4}N$ powders, and fcc ${\gamma}'-Fe_{4}N$ phase is transformed to a bct ${\alpha}'-Fe(N)$ phase by stress-induced martensitic transformation, being accompanied by an initial increase in saturation magnetization. During annealing the bct ${\alpha}'-Fe(N)$ nanocrystalline phase which is obtained by mechanical grinding for a long time, an ${\alpha}'-Fe_{16}N_{2}$ phase partially appears as an intermediate phase at 673~773 K, causing an increase in saturation magnetization. During milling of Mn-45, 70 and 85 at.% Al mixed powders, Al atoms are partially solubilized into an ${\alpha}-Mn$ phase. The Al supersaturated ${\alpha}-Mn-type$ phases change from paramagnetic to ferromagnetic : the saturation magnetization is 11 emu/g for the as-milled Mn-70 at.% Al powders. Moreover, by removing almost all Al atoms from the as-milled Mn-85 at.% Al powders using chemical leaching, the saturation magnetization increases up to 36 emu/g. The above bct ${\alpha}'-Fe(N)$ and ferromagnetic ${\alpha}-Mn$ type alloys are the magnetic materials found for the first time, by using the present mechanochemical process.

  • PDF

A Study on Temperature Dependence of Tunneling Magnetoresistance on Plasma Oxidation Time and Annealing Temperature (플라즈마 산화시간과 열처리 조건에 따른 터널링 자기저항비의 온도의존특성에 관한 연구)

  • Kim, Sung-Hoon;Lee, Seong-Rae
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.3
    • /
    • pp.99-104
    • /
    • 2004
  • We have studied to understand the barrier and interface qualities and structural changes through measuring temperature dependent spin-polarization as functions of plasma oxidation time and annealing time. Magnetic tunnel junctions consisting of SiO2$_2$/Ta 5/CoFe 17/IrMn 7.5/CoFe 5/Al 1.6-Ox/CoFe 5/Ta 5 (numbers in nm) were deposited and annealed when necessary. A 30 s,40 s oxidized sample showed the lowest spin-polarization values. It is presumed that tunneling electrons were depolarized and scattered by residual paramagnetic Al due to under-oxidation. On the contrary, a 60s, 70 s oxidized sample might have experienced over-oxidation, where partially oxidized magnetic dead layer was formed on top of the bottom CoFe electrode. The magnetic dead layer is known to increase the probability of spin-flip scattering. Therefore it showed a higher temperature dependence than that of the optimum sample (50 s oxidation). temperature dependence of 450 K annealed samples was improved when the as-deposited one compared. But the sample underwent 475 K and 500 K annealing exhibits inferior temperature dependence of spin-polarization, indicating that the over-annealed sample became microstucturally degraded.

Nickel Substitution Effects on Nano-sized Co, Mn and MnZn Ferrites Synthesized by Sol-gel Method

  • Choi, Won-Ok;Kwon, Woo Hyun;Chae, Kwang Pyo;Lee, Young Bae
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.40-45
    • /
    • 2016
  • Nickel substituted nano-sized ferrite powders, $Co_{1-x}Ni_xFe_2O_4$, $Mn_{1-x}Ni_xFe_2O_4$ and $Mn_{1-2x}Zn_xNi_xFe_2O_4$ ($0.0{\leq}x{\leq}0.2$), were fabricated using a sol-gel method, and their crystallographic and magnetic properties were subsequently compared. The lattice constants decreased as quantity of nickel substitution increased, while the particle size decreased in $Co_{1-x}Ni_xFe_2O_4$ ferrite but increased for the $Mn_{1-x}Ni_xFe_2O_4$ and $Mn_{1-2x}Zn_xNi_xFe_2O_4$ ferrites. For the $Co_{1-x}Ni_xFe_2O_4$ and $Mn_{1-x}Ni_xFe_2O_4$ ($0.0{\leq}x{\leq}0.2$) ferrite powders, the $M{\ddot{o}}ssbauer$ spectra could be fitted as the superposition of two Zeeman sextets due to the tetrahedral and octahedral sites of the $Fe^{3+}$ ions. However, the $M{\ddot{o}}ssbauer$ spectrum of $Mn_{0.8}Zn_{0.1}Ni_{0.1}Fe_2O_4$ consisted of two Zeeman sextets and one single quadrupole doublet due to the ferrimagnetic and paramagnetic behavior. The area ratio of the $M{\ddot{o}}ssbauer$ spectra could be used to determine the cation distribution equation, and we also explain the variation in the $M{\ddot{o}}ssbauer$ parameters by using this cation distribution equation, the superexchange interaction and the particle size. The saturation magnetization decreased in the $Co_{1-x}Ni_xFe_2O_4$ and $Mn_{1-2x}Zn_xNi_xFe_2O_4$ ferrites but increased in the $Mn_{1-x}Ni_xFe_2O_4$ ferrite with nickel substitution. The coercivity decreased in the $Co_{1-x}Ni_xFe_2O_4$ and $Mn_{1-2x}Zn_xNi_xFe_2O_4$ ferrites but increased in the $Mn_{1-x}Ni_xFe_2O_4$ ferrite with nickel substitution. These variations could thus be explained by using the site distribution equations, particle sizes and spin magnetic moments of the substituted ions.

Synthesis and Reactions of Organoruthenium(Ⅲ) Complexes (새로운 3가 유기루테늄 착물의 합성과 반응)

  • Lee Dong-Hwan;Kim Hag-Gu;Seo Dae-Ryong;Kim Byung-Soon
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.1
    • /
    • pp.98-104
    • /
    • 1993
  • The paramagnetic organoruthenium(III) complexes $({\eta}^5-C_5Me_5)RuCl_2(PR_3) (PR_3 = PMe_3,\;PEt_3,\;PiPr_3,\;PCy_3,\;PMe_2Ph,\;PMePh_2,\;PPh_3,\;P(p-C_6H_4CH_3)_3$, DPPE, DPPB, Py) (2a∼2k) were synthesized by the reaction of $[({\eta}^5-C_5Me_5)RuCl_2]_2$ (1) with 1 equivalent of the corresponding phosphines $(PR_3)$. The effective magnetic moment ((${\mu}_{eff} = 1.65∼2.07 B.M.$)) derived from the magnetic susceptibility measurements of the complexes (2a∼2k) were consistent with the presence of a "single" unpaired electron in the molecule. Treatment of dichlororuthenium (III) complex ({\eta}^5-C_5Me_5)RuCl_2(PR_3)$ (2) (i) with KBr in acetone afforded the dibromoruthenium (III) complex $({\eta}^5-C_5Me_5)RuBr_2(PR_3) (PR_3 = PPh_3)$, (ii) with sodium amalgam in diethylether led to the bis(phosphine) derivatives $({eta}^5-C_5Me_5)RuCl(PR_3)_2 (PR_3 = PMe_3,\;PMePh_2)$, and (iii) with carbonmonoxide gave to the carbonyl derivatives $({\eta}^5-C_5Me_5)RuCl(PR_3)(CO) (PR_3 = PMe_3,\;PPh_3)$.

  • PDF

EPR and Electrical Studies in Layered Na1.9Li0.1Ti3O7 and its Copper Doped Derivatives (층상구조의 Na1.9Li0.1Ti3O7과 그 구리 혼입 유도체의 EPR 및 전기적 연구)

  • Pal, D.;Chand, Prem;Tandon, R.P.;Shripal
    • Journal of the Korean Chemical Society
    • /
    • v.49 no.6
    • /
    • pp.560-566
    • /
    • 2005
  • Sintered ceramic samples of pure and some copper doped layered sodium lithium tri-titanate ($Na_{1.9}Li_{0.1}Ti_{3-X}Cu_XO_{7-X}$) materials with different dopant molar percentages (0.0$Cu^{2+}$ at $Ti^{4+}$ sites in the lattice is proposed in this paper. Furthermore, three distinct regions have been identified in log(${\sigma}_{d.c.}T$) versus 1000/T plots. The lowest temperature region is attributed to electronic hopping conduction(polaron) for all copper doped derivatives and ionic conduction for lithium substituted $Na_2Ti_3O_7$.The mechanism of conduction in the intermediate region is associated interlayer ionic conduction and in the highest temperature region is associated modified interlayer ionic conduction.

MR Study of Wate Exchange and Cell Membrane Permeability in Rat Liver Cells Using a Tissue-Specific MR Contrast Agent (조직 특성 MR 조영제를 이용한 쥐의 간세포막의 물분자 교환 및 투과율의 MR 측정기법)

  • Yongmin Chang
    • Investigative Magnetic Resonance Imaging
    • /
    • v.2 no.1
    • /
    • pp.73-82
    • /
    • 1998
  • Purpose : A precise NMR technique for measuring the rate of water exchange and cell membrane permeability across the hepatocyte membrane using liver-specific MR contrast agent is described. Materials and Methods : The rat hepatocytes isolated by perfusion of the livers were used for the NMR measurements. All experiments were performed on an IBM field cycling relaxometer operating from 0.02MHz to 60 MHz proton Larmor frequency. spin-echo pulse sequence was empolyed to measure spin-lattice relaxation time, T1. The continuous distribution analysis of water proton T1 data from rat hepatocytes containing low concentrations of the liver specific contrast agent, Gd-EOB-DTPA, modeled by a general two compartment exchange model. Results : The mean residence time of water molecule inside the hepatocyte was approximately 250 msec. The lower limit for the permeability of the hepatocyte membrane was $(1.3{\pm}0.1){\;}{\times}{\;}10^{-3}cm/sec$. The CONTIN analysis, which seeks the natural distribution of relaxation times, reveals direct evidence of the effect of diffusive exchange. the diffusive water exchange is not small in the intracellular space in the case of hepatocytes. Conclusions : Gd-EOB-DTPA, when combined with continuous distribution analysis, provides a robust method to study water exchange and membrane permeability in hepatocytes. Water exchange in hepatocyte is much slower thatn that in red blood cells. Therefore, tissue-specific contrast agent may be used as a functional agent to give physiological information such as cell membrane permeability.

  • PDF