• Title/Summary/Keyword: Parallel structural analysis

Search Result 247, Processing Time 0.021 seconds

Parallel computation for debonding process of externally FRP plated concrete

  • Xu, Tao;Zhang, Yongbin;Liang, Z.Z.;Tang, Chun-An;Zhao, Jian
    • Structural Engineering and Mechanics
    • /
    • v.38 no.6
    • /
    • pp.803-823
    • /
    • 2011
  • In this paper, the three dimensional Parallel Realistic Failure Process Analysis ($RFPA^{3D}$-Parallel) code based on micromechanical model is employed to investigate the bonding behavior in FRP sheet bonded to concrete in single shear test. In the model, the heterogeneity of brittle disordered material at a meso-scale was taken into consideration in order to realistically demonstrate the mechanical characteristics of FRP-to-concrete. Modified Mohr-coulomb strength criterion with tension cut-off, where a stressed element can damage in shear or in tension, was adopted and a stiffness degradation approach was used to simulate the initiation, propagation and growth of microcracks in the model. In addition, a Master-Slave parallel operation control technique was adopted to implement the parallel computation of a large numerical model. Parallel computational results of debonding of FRP-concrete visually reproduce the spatial and temporal debonding failure progression of microcracks in FRP sheet bonded to concrete, which agrees well with the existing testing results in laboratory. The numerical approach in this study provides a useful tool for enhancing our understanding of cracking and debonding failure process and mechanism of FRP-concrete and our ability to predict mechanical performance and reliability of these FRP sheet bonded to concrete structures.

Development of Pre- and Post-processing System for Supercomputing-based Large-scale Structural Analysis (슈퍼컴퓨팅 기반의 대규모 구조해석을 위한 전/후처리 시스템 개발)

  • Kim, Jae-Sung;Lee, Sang-Min;Lee, Jae-Yeol;Jeong, Hee-Seok;Lee, Seung-Min
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.2
    • /
    • pp.123-131
    • /
    • 2012
  • The requirements for computational resources to perform the structural analysis are increasing rapidly. The size of the current analysis problems that are required from practical industry is typically large-scale with more than millions degrees of freedom (DOFs). These large-scale analysis problems result in the requirements of high-performance analysis codes as well as hardware systems such as supercomputer systems or cluster systems. In this paper, the pre- and post-processing system for supercomputing based large-scale structural analysis is presented. The proposed system has 3-tier architecture and three main components; geometry viewer, pre-/post-processor and supercomputing manager. To analyze large-scale problems, the ADVENTURE solid solver was adopted as a general-purpose finite element solver and the supercomputer named 'tachyon' was adopted as a parallel computational platform. The problem solving performance and scalability of this structural analysis system is demonstrated by illustrative examples with different sizes of degrees of freedom.

Methods of Nonlinear Structural Design Sensitivity Analysis (비선형(非線型) 구조(構造)의 설계민감도(設計敏感度) 해석법(解析法))

  • Ryu, Yeon Sun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.4
    • /
    • pp.13-20
    • /
    • 1987
  • Methods of nonlinear structural design sensitivity analysis are developed in parallel with the nonlinear finite element structural analysis methods and numerically evaluated. Direct decomposition and iterative solution methods for the secant stiffness approach and direct use of tangent stiffness in the design sensitivity analysis phase are derived and presented as the methods of nonlinear structural analysis and design sensitivity analysis are closely related. From the considerations of theoretical and numerical behavior, the tangent stiffness approach is shown to be efficient as the intermediate results of structural analysis can be effectively used in the design sensitivity analysis stage.

  • PDF

Numerical Analysis of Nuclear-Power Plant Subjected to an Aircraft Impact using Parallel Processor (병렬프로세서를 이용한 원전 격납건물의 항공기 충돌해석)

  • Song, Yoo-Seob;Shin, Sang-Shup;Jung, Dong-Ho;Park, Tae-Hyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.6
    • /
    • pp.715-722
    • /
    • 2011
  • In this paper, the behavior of nuclear-power plant subjected to an aircraft impact is performed using the parallel analysis. In the erstwhile study of an aircraft impact to the nuclear-power plant, it has been used that the impact load is applied at the local area by using the impact load-time history function of Riera, and the target structures have been restricted to the simple RC(Reinforced Concrete) walls or RC buildings. However, in this paper, the analysis of an aircraft impact is performed by using a real aircraft model similar to the Boeing 767 and a fictitious nuclear-power plant similar to the real structure, and an aircraft model is verified by comparing the generated history of the aircraft crash against the rigid target with another history by using the Riera's function which is allowable in the impact evaluation guide, NEI07-13(2009). Also, in general, it is required too much time for the hypervelocity impact analysis due to the contact problems between two or more adjacent physical bodies and the high nonlinearity causing dynamic large deformation, so there is a limitation with a single CPU alone to deal with these problems effectively. Therefore, in this paper, Message-Passing MIMD type of parallel analysis is performed by using self-constructed Linux-Cluster system to improve the computational efficiency, and in order to evaluate the parallel performance, the four cases of analysis, i.e. plain concrete, reinforced concrete, reinforced concrete with bonded containment liner plate, steel-plate concrete structure, are performed and discussed.

Closed-form and numerical solution of the static and dynamic analysis of coupled shear walls by the continuous method and the modified transfer matrix method

  • Mao C. Pinto
    • Structural Engineering and Mechanics
    • /
    • v.86 no.1
    • /
    • pp.49-68
    • /
    • 2023
  • This study investigates the static and dynamic structural analysis of symmetrical and asymmetrical coupled shear walls using the continuous and modified transfer matrix methods by idealizing the coupled shear wall as a three-field CTB-type replacement beam. The coupled shear wall is modeled as a continuous structure consisting of the parallel coupling of a Timoshenko beam in tension (with axial extensibility in the shear walls) and a shear beam (replacing the beam coupling effect between the shear walls). The variational method using the Hamilton principle is used to obtain the coupled differential equations and the boundary conditions associated with the model. Using the continuous method, closed-form analytical solutions to the differential equation for the coupled shear wall with uniform properties along the height are derived and a numerical solution using the modified transfer matrix is proposed to overcome the difficulty of coupled shear walls with non-uniform properties along height. The computational advantage of the modified transfer matrix method compared to the classical method is shown. The results of the numerical examples and the parametric analysis show that the proposed analytical and numerical model and method is accurate, reliable and involves reduced processing time for generalized static and dynamic structural analysis of coupled shear walls at a preliminary stage and can used as a verification method in the final stage of the project.

Simplified Analysis of Rectangular Liquid Storage Tanks Considering Fluid-Structure Interaction (유체-구조물 상호작용을 고려한 직사각형 액체저장탱크의 단순해석법)

  • Lee, Jin Ho;Cho, Jeong-Rae
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.5
    • /
    • pp.203-209
    • /
    • 2022
  • A simplified method for earthquake response analysis of a rectangular liquid storage tank is proposed with fluid-structure interaction considered. In order to simplify the complex three-dimensional structural behavior of a rectangular liquid storage tank, it is assumed that structural deformation does not occur in the plane parallel to the direction in which the earthquake ground motion is applied but in the plane perpendicular to the direction. The structural deformation is approximated by combining the natural modes of the simple beam and the cantilever beam. The hydrodynamic pressure, the structure's mass and stiffness, and the hydrodynamic pressure's added mass are derived by applying the Rayleigh-Ritz method. The natural frequency, structural deformation, pressure, effective mode mass, and effective mode height of the rectangular liquid storage tank are obtained. The structural displacement, hydrodynamic pressure, base shear, and overturning moment are calculated. The seismic response analysis of an example rectangular liquid storage tank is performed using the proposed simplified approach, and its accuracy is verified by comparing the results with the reference solution by the finite element method. Existing seismic design codes based on the hydrodynamic pressure in rigid liquid storage tanks are observed to produce results with significant errors that cannot be ignored.

Remote Parallel Pseudo-Dynamic Testings Using Internet on Base Isolated Bridge (인터넷을 이용한 원격병렬 유사동적실험 : 면진교량에 대하여)

  • 윤정방;김재민;김남식;심종민;구기영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.304-307
    • /
    • 2000
  • This paper presents a numerical simulation study for remote parallel pseudo-dynamic testings using Internet. In this testing method, experimental facilities located at different places can be parallelly used for testing a large-scale structure with many components subjected to severe nonlinear behavior. Example analysis is carried out on a base- isolated bridge for earthquake loading. The results indicate that the time required for data communication between two facilities located 250km apart through Internet for t 000 time steps is about 20 minutes, which is fairly equivalent to the time required for pseudo-dynamic testing. This testing method can be more powerful, as the data transmitting technique through Internet improves.

  • PDF

Multiple-Mode Structural Vibration Control Using Negative Capacitive Shunt Damping

  • Park, Chul-Hue;Park, Hyun-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1650-1658
    • /
    • 2003
  • This paper deals with a novel shunt circuit, which is capable of suppressing multimode vibration amplitudes by using a pair of piezoceramic patches. In order to describe the characteristic behaviors of a piezoelectric damper connected with a series and a parallel resistor-negative capacitor branch circuit, the stiffness ratio and loss factor with respect to the non-dimensional frequency are considered. The mechanism of the shunt damper is also described by considering a shunt voltage constrained by shunt impedance. To obtain a guideline model of the piezo/beam system with a negative capacitive shunting, the governing equations of motion are derived through the Hamilton's principle and a piezo sensor equation as well as a shunt-damping matrix is developed. The theoretical analysis shows that the piezo/beam system combined with a series and a parallel resistor-negative capacitor branch circuit developed in this study can significantly reduce the multiple-mode vibration amplitudes over the whole structural frequency range.

Effect of Structural and Morphological Changes on the Conductivity of Stretched PANI-DBSA/HIPS Film

  • Lee, Jong-Hyeok;Kim, Eun-Ok
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2661-2665
    • /
    • 2011
  • We studied the effect of structural and morphological changes on the conductivity of a stretched conducting polymer film. To improve the poor processability of polyaniline, we used dodecylbenzenesulfonic acid as both a surfactant and a dopant during emulsion polymerization, followed by blending with high-impact polystyrene. UV-Vis/NIR spectra were obtained to observe conformational changes, and SEM and AFM were used to investigate morphological changes. FT-IR dichroism was applied to determine the microscopic orientation, and XRD patterns were obtained for quantitative crystallinity analysis. The electrical conductivity (${\sigma}_{\parallel}/{\sigma}_{\perp}$) was measured as a function of draw ratio. We found a clear correlation between morphological changes and (${\sigma}_{\parallel}/{\sigma}_{\perp}$), especially at the stretching limit. The conductivity of the films can be modified according to the desired application by controlling their structure and morphology.

Investigation on the wind-induced instability of long-span suspension bridges with 3D cable system

  • Zhang, Xin-Jun
    • Wind and Structures
    • /
    • v.14 no.3
    • /
    • pp.209-220
    • /
    • 2011
  • The cable system is generally considered to be a structural solution to increase the spanning capacity of suspension bridges. In this work, based on the Runyang Bridge over the Yangtze River, three case suspension bridges with different 3D cable systems are designed, structural dynamic characteristics, the aerostatic and aerodynamic stability are investigated numerically by 3D nonlinear aerostatic and aerodynamic analysis, and the cable system favorable to improve the wind-induced instability of long-span suspension bridges is also proposed. The results show that as compared to the example bridge with parallel cable system, the suspension bridge with inward-inclined cable system has greater lateral bending and tensional frequencies, and also better aerodynamic stability; as for the suspension bridge with outward-inclined cable system, it has less lateral bending and tensional frequencies, and but better aerostatic stability; however the suspension bridge is more prone to aerodynamic instability, and therefore considering the whole wind-induced instability, the parallel and inward-inclined cable systems are both favorable for long-span suspension bridges.