• Title/Summary/Keyword: Parallel plates

Search Result 211, Processing Time 0.032 seconds

Mixed convection heat transfer from vertically parallel and misaligned plates (수직 평판의 평행배열과 엇갈린 배열에서 혼합대류 열전달)

  • 김상영;정한식;권순석
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.68-74
    • /
    • 1993
  • The mixed convection heat transfer has been studied numerically for misaligned and parrallel arrays of two flat plates at 100.leg.Re.leg.700, 0.1.leg.B.leg.1.0, 0.2.leg.leg.PHI.$_{R}$.leg.1Gr=10$^{4}$ and Pr=0.71. For misaligned plates and parallel plates, the optimum plate spacings move to the narrow spacing as Reynolds number and .PHI.$_{R}$ increase and can be expressed by the correlation equations at Gr=10$^{4}$. The optimum plate spacings for parallel plates sharply move to the narrow spacing compared with misaligned plates. The maximum mean Nusselt number of parallel plates shows higher value than that of misaligned plates and can be expressed by the correlation equations at Gr=10$^{4}$.EX>.

  • PDF

Analytical model for the formation of electric fields in parallel-plate capacitors

  • Taehun Jang;Jungmin Moon;Hye Jin Ha;Sang Ho Sohn
    • Journal of Science Education
    • /
    • v.46 no.2
    • /
    • pp.212-221
    • /
    • 2022
  • In this study, we propose an analytical model to elucidate the formation of electric fields between two parallel conducting plates. Using nine Gaussian surfaces, we investigated the charge redistributions and electric fields formed by parallel conducting plates when two charged plates get close together. The electric charges are redistributed via a new electrostatic equilibrium to create the electric field of each plates. As a result, the electric field start from + electrode plate to - electrode plate via inducing a new electrostatic equilibrium, implying that the application of Gaussian surfaces to only one of the electrodes of parallel-plate capacitors is deserved. The results will help undergraduate students understand the charge redistribution and the electric field formation in parallel-plate capacitors in a reasonable manner.

Flow Rate-Pressure Drop Characteristics of Dispersive ER Fluid According to Change of Electric Field Strength in Clearance between Parallel Plates (평행평판 간극에서 전기장의 강도변화에 따른 분산계 ER유체의 유량-압력강하 특성)

  • 장성철;염만오;김도태
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.1
    • /
    • pp.78-83
    • /
    • 2003
  • Electro-rheological(ER) fluids are suspensions in which rheological properties show an abrupt change with variation of electric fields. We modeled the parallel-plates relating to ER-Valve system and yielded shear stress according to the strength of electric field. The purpose of the present study is to examine the flow characteristics of ER fluids according to the strength of electric field between parallel-plates. Then the steady relationship between pressure drop and flow rate of the ER fluids between parallel-plates under application of an electric fields was measured. The pressure drop and flow rates of ER fluids under the application of electric fields for steady flow were measured. For the experiment, we used the ER fluids, 35w% zeolite having hydrous particles and differential pressure gauge. This test reviewed experiment for the special changes of ER fluids in the steady flow condition.

Characteristics of the Resonance and Impedance of Parallel Plates due to the Embedded Metamaterial Substrate (Metamaterial 기판에 의한 평행평판 공진 및 임피던스 특성)

  • Kahng, Sung-Tek
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.8
    • /
    • pp.41-46
    • /
    • 2008
  • This paper conducts the research on the variation in the characteristics of the resonance and impedance of the metallic parallel plates due to the replacement of the normal dielectric substrate by the metamaterial. The ENG(${\epsilon}<0$), MNG(${\mu}<0}$) and DNG(${\epsilon},{\mu}<0$) types of metamaterial as well as the DPS(Double Positive) material are taken into consideration a full-wave modal analysis method known for accurate computation, as the SRR-kind of Lorentz model for permittivity and metal wire-periodic array-kind of Drude model for permeability, and the behaviors of parallel plates' resonance mode and impedance are observed. Based upon the observation, the design guidelines for the substrate can be addressed regrading how to suppress the parallel plates' spurious resonance modes that degrade the quality of the electronic equipment.

A Quantitative Visualization of Mixed Convection in Parallel Plates Using PIV (PIV를 이용한 평행평판 내의 혼합대류의 정량적 가시화)

  • 박일용;배대석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.509-515
    • /
    • 2004
  • The PIV(Particle Image Velocimetry) with liquid crystal tracers is used for visualizing and analysis of the mixed convection in the parallel plates with the upper part cooled and the lower part heated. It is found that the flow pattern of mixed convection in the parallel plates can be classified into three patterns which was affected by Reynolds number. Also, the periodic nature is confirmed, and visualized in experiment.

COUETTE FLOW OF TWO IMMISCIBLE LIQUIDS BETWEEN TWO PARALLEL POROUS PLATES IN A ROTATING CHANNEL

  • Rani, Ch. Baby
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.1
    • /
    • pp.57-68
    • /
    • 2015
  • When a straight channel formed by two parallel porous plates, through which two immiscible liquids occupying different heights are flowing a secondary motion is set up. The motion is caused by moving the upper plate with a uniform velocity about an axis perpendicular to the plates. The solutions are exact solutions. Here we discuss the effect of suction parameter and the position of interface on the flow phenomena in case of Couette flow. The velocity distributions for the primary and secondary flows have been discussed and presented graphically. The skin-friction amplitude at the upper and lower plates has been discussed for various physical parameters.

A Numerical Study on the Characteristic of Mixed Convection Between Inclined Parallel Plates (경사진 평행평판 내 혼합대류 열전달 특성에 관한 수치적 연구)

  • Piao, R.L.;Bae, D.S.;Kwon, O.B.
    • Journal of Power System Engineering
    • /
    • v.10 no.2
    • /
    • pp.29-35
    • /
    • 2006
  • Two-dimensional numerical simulation has been performed to investigate mixed convection heat transfer between inclined parallel plates with bottom-heated and top-cooled uniformly. The ratio of parallel plate length to height is 9.33, Prandtl number is 909(that of silicone oil at 298K) and Rayleigh number is 8600. In the ranges of the Reynolds number Re from 0 to 1.8 and the angle of inclination ${\theta}$ from 0 to 90 degree. The governing equations are discretized using the finite volume method. In this study, the effects of the Reynolds number, the angle of inclination, and the local and mean Nusselt numbers are presented and discussed. It is found that the periodic flow of mixed convection between inclined parallel plates is shown at $0^{\circ}{\leq}\;{\theta}<30^{\circ},\;Re<0.063$, and the flow pattern can be classified into three patterns which depend on Reynolds number and the angle of inclination. The minimum average Nusselt numbers occur at Re=0.05 regardless of the angle of inclination.

  • PDF

Experiment of frost growth on the parallel plates in the condition of laminar and low humidity (층류유동 저습도 조건에서의 평행평판형 냉각판 서리성장 실험)

  • 한흥도;노승탁
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.4
    • /
    • pp.440-447
    • /
    • 1999
  • The frosting characteristics on the vertical parallel plates with three cooling plates were experimentally investigated. The experimental parameters were the cooling plate temperature, the air humidity, the air temperature, the air Reynolds number, and the location. The frosting conditions were limited to air temperatures from 10 to $15^{\circ}C$ , air Reynolds numbers from 1600 to 2270, air humidity ratios from 0.00275 to 0.0037kgw/kga and cooling plate temperatures from -10 to $-20^{\circ}C$. Frost growth and density toward the front of the plate were more thick and dense than toward the rear. Frost growth increased with decreasing plate temperature and increasing humidity. In the conditions of the laminar flow, dew point below $0^{\circ}C$and non-cyclic frosting period, frost thickness increased with increasing air temperature. The reason of increasing frost thickness with increasing air temperature was sublimation-ablimation process. The average growth thickness along the locations showed little dependence on the Reynolds numbers.

  • PDF

Performance of Liquid-Cooled Cold Plates for Multiple Heat Sources in a Humanoid Robot (인간형 로봇 내부의 다중 열원에 대한 수냉식 냉각판의 성능)

  • Karng, Sarng-Woo;Kim, Seo-Young;Moon, Jong-Min;Hwang, Kyu-Dae;Rhee, Gwang-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2053-2058
    • /
    • 2008
  • It was investigated thermal performances on two array types of a serial circulation and a two-way parallel circulation for six water-cooled cold plates covered with non-metallic material (polycarbonate, PC) to reduce weight of the cooling devices for humanoid robot cooling. Six cold plates attached on $10{\times}10\;mm^2$ copper base : $0.5{\times}0.5\;mm^2$ pin-finned surfaces of 1.5 mm high with 0.5 mm array spacing, was mounted on six copper heating blocks with isothermal conditions of $50{\sim}90^{\circ}C$, respectively. In order to compare thermal characteristics according to two circulation types, the surface temperatures of heating blocks and the cooling water temperatures at inlets and outlets of cold plates were measured. From the results, it was found that a two-way parallel circulation was better performance than a serial circulation in terms of total thermal resistance, total heat transfer rate, and surface temperature rises from $1^{st}$ heating block to last one for six multiple cold plates.

  • PDF

A Numerical Study on the Mixed Convection in Open-Ended Inclined Channels (양 끝이 개방된 경사진 채널 내에서의 혼합대류에 관한 수치적 연구)

  • Piao Ri-Long;Bae Dae-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.78-85
    • /
    • 2005
  • A numerical calculation is performed to study the effects of buoyancy force on the heat transfer characteristics of laminar forced convection flow in inclined parallel plates with the upper part cooled and the lower Part heated uniformly. Numerical results are presented for the Reynolds number ranges from $4.0\times10^{-3}$ to $1.13\times10^{-1}$. the angle of inclination, $\theta$. from 0 to 90 degree and Pr of the high viscosity fluid is 909. It is found that the flow pattern of mixed convection in inclined parallel Plates can be classified into four patterns which affected by Reynolds number and the angle of inclination.