• Title/Summary/Keyword: Parallel magnetic field

Search Result 229, Processing Time 0.029 seconds

Influence of non-uniform current distribution on transport ac loss in Bi-2223/Ag tapes (불균일 전류분포가 Bi-2223/Ag 초전도선재의 통전손실에 미치는 영향)

  • Choi, S.;Nah, W.;Joo, J.;Kim, J.H.;Ryu, K.W.;Sohn, M.H.;Kwon, Y.K.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1240-1242
    • /
    • 2005
  • In this study, we estimate the transport current loss of Bi-2223/Ag tapes with non-uniform current distribution. The conductor was consisted of three Bi-2223/Ag tapes and the each tapes were attached in parallel. The loss of conductor was investigated both numerical and experimental methods. The numerical code to predict ac loss was developed, and finite element method was introduced. It contained intrinsic properties of superconducting tape, which was obtained from nonlinear current voltage relation with external magnetic field and its orientation. Two results were compared and discussed. They showed good agreements with each other.

  • PDF

Study on Tilt of 4-Wire Actuator in Optical Disc (광디스크용 4와이어 구동기의 경사에 관한 연구)

  • 한창수;서현석;이정현;원종화;김수현;곽윤근
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.7
    • /
    • pp.52-60
    • /
    • 1998
  • In optical disc system, 4-wire actuator has undesired tilt which degenerates the performance of RF signal. This tilt occurs from moment around the axis parallel to the tangential direction of the disk. The main reason of the moment is the coupling effect between focus driving system and tracking driving system. This paper constructed tilt mechanism and analyzed tilt quantity due to the moment based on structural analysis and magnetic field analysis. And the experiment about tilt was executed. The results were compared and discussed about the difference. Then, the design method for reducing tilt angle was suggested.

  • PDF

Magnetoresistance Variation for Rotation in Ferromagnetic Thin Films (강자성체박막의 회전에 따른 자기저항의 변화)

  • Yang, Ki-Won;Park, Sang-Chul
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.11 no.3
    • /
    • pp.225-229
    • /
    • 2006
  • In our angle configuration, several peculiar characteristic behaviors of MR could be observed, the mixing of positive MR(PMR) and negative MR(NMR) in the inclined sample was observed. The complete mixing angle, ${\phi}_{mix}$ as a function of inclination angle, ${\theta}$ was observed to fit well to the relation of ${\phi}_{mix}=tan^{-1}(1+tan{\theta})$ in nickel films. The above theoretical relation was obtained by decomposing the magnetic field into the components parallel and perpendicular to the current flow and identifying ${\phi}_{mix}$ as the angle satisfying that the above two components of magnetic field were identical. We also observed that the data of ${\phi}_{mix}$ did not satisfy the above theoretical relation in the iron film. This was explained by the fact that the growth direction in the iron film was an intermediate direction of magnetization, while the growth direction in the nickel film was an easy axis of magnetization.

  • PDF

Design of an Inductively Coupled Plasma Source with Consideration of Electrical Properties and its Practical Issues (전기적 특성을 고려한 ICP Source 설계)

  • Lee, S.W.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.3
    • /
    • pp.176-185
    • /
    • 2009
  • The realization and the performance of ICP source are strongly affected by its electrical impedance and the electric/magnetic field distribution. The ICP source impedance is determined by the antenna impedance and the plasma one. It is preferred to keep the imaginary impedance between -100 ohm to 100 ohm, since it should be avoided the high voltage formation on the antenna and abrupt impedance variation during the thin film process. The plasma uniformity is affected by the electric and magnetic field which is formed by the antenna current and voltage. The influence of azimuthal symmetry are shown by the electromagnetic simulation and the measurement result of plasma density. The radial uniformity can be controlled by locating the concentric antennas which have different diameters. The power distribution ratio and its control method are presented in the case of parallel antenna connections.

$NiFe/Co/Al_2O_3/Co/IrMn$ 접합의 터널링 자기저항효과

  • 홍성민;이한춘;김택기
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.6
    • /
    • pp.291-295
    • /
    • 1999
  • $NiFe/Co/Al_2O_3/Co/IrMn$ tunneling junctions were grown on (100)Si wafer and their spin-valve tunneling magnetoresistance (TMR) was studied. The tunneling junctions were grown by using a 5-gun RF/DC magnetron sputter. $Al_2O_3$ barrier layer was formed by exposing Al layer to oxygen atmosphere at 6$0^{\circ}C$ for 72 hours. Strong exchange coupling interaction is observed between the ferromagnetic Co and the antiferromagnetic IrMn of Co/IrMn bilayer when IrMn is 100$\AA$ thick. $NiFe(183\;{\AA})/Co(17\;{\AA})/Al_2O_3(16\;{\AA})/Co(100\;{\AA})/IrMn(100\;{\AA})$ tunneling junction shows best TMR ratio of about 10% in the applied magnetic field range of $\pm$20 Oe. The TMR ratio is improved about 23% and electrical resistance is decreased about 34% when annealed at 200 $^{\circ}C$ for 1 hour in magnetic field of 330 Oe, parallel to the bottom electrode. With increasing the active area of junction the TMR ratio increases while electrical resistance decreases.

  • PDF

Fabrication of Nb SQUID on an Ultra-sensitive Cantilever (Nb SQUID가 탑재된 초고감도 캔티레버 제작)

  • Kim, Yun-Won;Lee, Soon-Gul;Choi, Jae-Hyuk
    • Progress in Superconductivity
    • /
    • v.11 no.1
    • /
    • pp.36-41
    • /
    • 2009
  • Superconducting quantum phenomena are getting attention from the field of metrology area. Following its first successful application of Josephson effect to voltage standard, piconewton force standard was suggested as a candidate for the next application of superconducting quantum effects in metrology. It is predicted that a micron-sized superconducting Nb ring in a strong magnetic field gradient generates a quantized force of the order of sub-piconewtons. In this work, we studied the design and fabrication of Nb superconducting quantum interference device (SQUID) on an ultra-thin silicon cantilever. The Nb SQUID and electrodes were structured on a silicon-on-insulator (SOI) wafer by dc magnetron sputtering and lift-off lithography. Using the resulting SOI wafer, we fabricated V-shaped and parallel-beam cantilevers, each with a $30-{\mu}m$-wide paddle; the length, width, and thickness of each cantilever arm were typically $440{\mu}m,\;4.5{\mu}m$, and $0.34{\mu}m$, respectively. However, the cantilevers underwent bending, a technical difficulty commonly encountered during the fabrication of electrical circuits on ultra-soft mechanical substrates. In order to circumvent this difficulty, we controlled the Ar pressure during Nb sputtering to minimize the intrinsic stress in the Nb film and studied the effect of residual stress on the resultant device.

  • PDF

Design of Dual-band Metamaterial Absorber using Two Pairs of ELC Resonators (두 쌍의 ELC 공진기를 이용한 이중 대역 메타 흡수체의 설계)

  • Lee, Hyung-Sup;Lee, Hong-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.5 no.1
    • /
    • pp.26-32
    • /
    • 2012
  • This paper presents a metamaterial absorber unit sell structure with four-element electric-LC resonators (ELC). In order to enhance the operating bandwidth of the proposed absorber unit cell two pairs of ELC resonators with a different size are used. The proposed unit cell shows negative permittivity and permeability when the electric field is parallel to the capacitive gap and the magnetic field is normal to the plane of ELC resonator. The simulated results show peak absorbance over 90% at two frequencies of 8.53 and 9.08 GHz, respectively.

Fabrication of HTS SQUID Sensors for the Application to a High S/N Ratio Magnetocardiograph System (저잡음 심자도측정시스템 개발을 위한 고온초전도 SQUID 센서의 제작)

  • Kim I. S;Yu K. K;Park Y. K
    • Progress in Superconductivity
    • /
    • v.6 no.1
    • /
    • pp.19-23
    • /
    • 2004
  • YBCO do superconducting quantum interference device (SQUID) magnetometers based on bicrystal Josephson junctions on 10 mm ${\times}$ 10 mm $SrTiO_3$ substrates have been fabricated. The pickup coil of the device was designed to have 16 parallel loops with 50-fm-wide lines. We could obtain optimised direct coupled YBCO SQUID magnetometer design with field sensitivity $B_{N}$ $\Phi$/ of $4.5 nT/\Phi_{0}$ and magnetic field noise $B_{N}$ of about $22 fT/Hz^{1}$2/ with an I/f corner frequency of 2 Hz measured inside a magnetically shielded room. Preliminary results of magnetocardiograph measurement using the HTS SQUID magnetometers show signal to noise ratio of about 110, which is comparable to the quality of a commercial MCG system based on Nb-SQUIDs.

  • PDF

Polyvilylidenefluoride-based Nanocomposite Films Induced-by Exfoliated Boron Nitride Nanosheets with Controlled Orientation

  • Cho, Hong-Baek;Nakayama, Tadachika;Jeong, DaeYong;Tanaka, Satoshi;Suematsu, Hisayuki;Niihara, Koichi;Choa, Yong-Ho
    • Composites Research
    • /
    • v.28 no.5
    • /
    • pp.270-276
    • /
    • 2015
  • Polyvinylidene fluoride (PVDF)-based nanocomposites are fabricated by incorporation of boron nitride (BN) nanosheets with anisotropic orientation for a potential high thermal conducting ferroelectric materials. The PVDF is dissolved in dimethylformamide (DMF) and homogeneously mixed with exfoliated BN nanosheets, which is then cast into a polyimide film under application of high magnetic fields (0.45~10 T), where the direction of the filler alignment was controlled. The BN nanosheets are exfoliated by a mixed way of solvothermal method and ultrasonication prior to incorporation into the PVDF-based polymer suspension. X-ray diffraction, scanning electron microscope and thermal diffusivity are measured for the characterization of the polymer nanocomposites. Analysis shows that BN nanosheets are exfoliated into the fewer layers, whose basal planes are oriented either perpendicular or parallel to the composite surfaces without necessitating the surface modification induced by high magnetic fields. Moreover, the nanocomposites show a dramatic thermal diffusivity enhancement of 1056% by BN nanosheets with perpendicular orientation in comparison with the pristine PVDF at 10 vol % of BN, which relies on the degree of filler orientation. The mechanism for the magnetic field-induced orientation of BN and enhancement of thermal property of PVDF-based composites by the BN assembly are elucidated.

Effect of Manganese Content on the Magnetic Susceptibility of Ferrous-Manganese Alloys: Correlation between Microstructure on X-Ray Diffraction and Size of the Low-Intensity Area on MRI

  • Youn, Sung Won;Kim, Moon Jung;Yi, Seounghoon;Ahn, Hyun Jin;Park, Kwan Kyu;Lee, Jongmin;Lee, Young-Cheol
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.2
    • /
    • pp.76-87
    • /
    • 2015
  • Purpose: There is an ongoing search for a stent material that produces a reduced susceptibility artifact. This study evaluated the effect of manganese (Mn) content on the MRI susceptibility artifact of ferrous-manganese (Fe-Mn) alloys, and investigated the correlation between MRI findings and measurements of Fe-Mn microstructure on X-ray diffraction (XRD). Materials and Methods: Fe-Mn binary alloys were prepared with Mn contents varying from 10% to 35% by weight (i.e., 10%, 15%, 20%, 25%, 30%, and 35%; designated as Fe-10Mn, Fe-15Mn, Fe-20Mn, Fe-25Mn, Fe-30Mn, and Fe-35Mn, respectively), and their microstructure was evaluated using XRD. Three-dimensional spoiled gradient echo sequences of cylindrical specimens were obtained in parallel and perpendicular to the static magnetic field (B0). In addition, T1-weighted spin echo, T2-weighted fast spin echo, and $T2^*$weighted gradient echo images were obtained. The size of the low-intensity area on MRI was measured for each of the Fe-Mn binary alloys prepared. Results: Three phases of ${\alpha}^{\prime}$-martensite, ${\gamma}$-austenite, and ${\varepsilon}$-martensite were seen on XRD, and their composition changed from ${\alpha}^{\prime}$-martensite to ${\gamma}$-austenite and/or ${\varepsilon}$-martensite, with increasing Mn content. The Fe-10Mn and Fe-15Mn specimens comprised ${\alpha}^{\prime}$-martensite, the Fe-20Mn and Fe-25Mn specimens comprised ${\gamma}+{\varepsilon}$ phases, and the Fe-30Mn and Fe-35Mn specimens exhibited a single ${\gamma}$ phase. The size of the low-intensity areas of Fe-Mn on MRI decreased relative to its microstructure on XRD with increasing Mn content. Conclusion: Based on these findings, proper conditioning of the Mn content in Fe-Mn alloys will improve its visibility on MR angiography, and a Mn content of more than 25% is recommended to reduce the magnetic susceptibility artifacts on MRI. A reduced artifact of Fe-Mn alloys on MRI is closely related to the paramagnetic constitution of ${\gamma}$-austenite and/or ${\varepsilon}$-martensite.