• Title/Summary/Keyword: Parallel imaging

Search Result 201, Processing Time 0.02 seconds

Accelerating Medical Image Processing on Integrated GPU Using OpenCL (OpenCL을 이용한 내장형 GPU에서의 의학영상처리 가속화)

  • Kim, Beom-Jun;Shin, Byeong-seok
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.2
    • /
    • pp.1-10
    • /
    • 2017
  • A variety of filters are applied to improve the quality of noise and low resolution medical images. This is necessary to reduce the radiation dose of the patient and to improve the utilization of the conventional spherical imaging equipment. In the conventional method, it is common to perform filtering using the CPU of the PC. However, it is difficult to produce results in real time by applying various calculations and filters to high-resolution human images using only the CPU performance of a PC used in a hospital. In this paper, we analyze the structure and performance of Intel integrated GPU in CPU and propose a method to perform image filtering using OpenCL parallel processing function. By applying complex filters with high computational complexity to medical images, high quality images can be generated in real time.

The effect of different radiographic parameters on the height, width and visibility of cross-sectional image of mandible in spiral tomography (나선형 단층방사선사진촬영에서 촬영조건이 악골 단면상의 높이, 폭 및 인지도에 미치는 영향)

  • Lee Tae-Wan;Han Won-Jeong;Kim Eun-Kyung
    • Imaging Science in Dentistry
    • /
    • v.33 no.1
    • /
    • pp.43-49
    • /
    • 2003
  • Purpose : To evaluate the differences in bone height, bone width, and visibility of posterior spiral tomographic images according to various exposure directions, image layer thickness, and inclination of the mandibular inferior border. Materials and Methods: Six partially and completely edentulous dry mandibles were radiographed using Scanora spiral tomography. Spiral tomography was performed at different exposure directions (dentotangential and maxillotangential projection), image layer thicknesses (2 mm, 4 mm and 8 mm), and at various inclinations to the mandibular border (+ 100, 00 and -10°). The bone height and width was measured using selected tomographic images. The visibility of mandibular canal, crestal bone, and buccal and lingual surfaces were graded as 0, 1, or 2. Results : The bone width at the maxillo-tangential projection was wider than at the dento-tangential projection (p < 0.05). The visibility of buccal and lingual surface at the maxillo-tangential projection was higher than at the dento-tangential projection (p<0.05). Thinner image layer thicknesses resulted in greater visibility of buccal and lingual surfaces (p < 0.05). Bone height was greatest in the -10° group, and at the same time the bone width of the same group was the narrowest (p < 0.05). The visibility of alveolar crest and buccal surface of the + 10° group was the highest, while the visibility of the mandibular canal was greatest in the 00 group. Conclusion: When spiral tomography is performed at the mandibular posterior portion for visualization prior to implant surgery, it is important that the inferior border of mandible be positioned as parallel as possible to the floor. A greater improvement of visibility can be achieved by maintaining a thin image layer thickness when performing spiral tomography.

  • PDF

An Investigation of the Performance of the Colored Gauss-Seidel Solver on CPU and GPU (Coloring이 적용된 Gauss-Seidel 해법을 통한 CPU와 GPU의 연산 효율에 관한 연구)

  • Yoon, Jong Seon;Jeon, Byoung Jin;Choi, Hyoung Gwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.2
    • /
    • pp.117-124
    • /
    • 2017
  • The performance of the colored Gauss-Seidel solver on CPU and GPU was investigated for the two- and three-dimensional heat conduction problems by using different mesh sizes. The heat conduction equation was discretized by the finite difference method and finite element method. The CPU yielded good performance for small problems but deteriorated when the total memory required for computing was larger than the cache memory for large problems. In contrast, the GPU performed better as the mesh size increased because of the latency hiding technique. Further, GPU computation by the colored Gauss-Siedel solver was approximately 7 times that by the single CPU. Furthermore, the colored Gauss-Seidel solver was found to be approximately twice that of the Jacobi solver when parallel computing was conducted on the GPU.

Volumetric Blood Velocity Measurement on Multigate Pulsed Doppler System based on the Single Channel RF Sampling using the Optimized Sampling Factor (최적화된 샘플링 인수를 갖는 단일 채널 RF 샘플링 방식의 다중점 펄스 도플러 시스템을 사용한 혈류 속도분포 측정)

  • 임춘성;민경선
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.143-152
    • /
    • 1998
  • In this paper, we present the performances of a Doppler system using single channel RF(Radio Frequency) sampling. This technique consists of undersampling the ultrasonic blood backscattered RF signal on a single channel. Conventional undersampling method in Doppler imaging system have to use a minimum of two identical parallel demodulation channels to reconstruct the multigate analytic Doppler signal. However, this system suffers from hardware complexity and problem of unbalance(gain and phase) between the channels. In order to reduce these problems, we have realized a multigate pulsed Doppler system using undersampling on a single channel, It requires sampling frequency at $4f_o$(where $f_o$ is the center frequency of the transducer) and 12bits A/D converter. The proposed " single-Channel RF Sampling" method aims to decrease the required sampling frequency proportionally to $4f_o$/(2k+1). To show the influence of the factor k on the measurements, we have compared the velocity profiles obtained in vitro and in vivo for different intersequence delays time (k=0 to 10). We have used a 4MHz center frequency transducer and a Phantom Doppler system with a laminar stationary flow. The axial and volumetric velocity profiles in the vessel have been computed according to factor k and have been compared. The influence of the angle between the ultrasonic beam and the flow axis direction, and the fluid viscosity on the velocity profiles obtained for different values of k factor is presented. For experiment in vivo on the carotid, we have used a data acquisition system with a sampling frequency of 20MHz and a dynamic range of 12bits. We have compared the axial velocity profiles in systole and diastole phase obtained for single channel RF sampling factor.ng factor.

  • PDF

Design and Manufacture of Traveling-wave Electro-optic Modulator for X-band LFM Signal Generation (X-대역 LFM 신호생성을 위한 진행파형 전광변조기의 설계 및 제작)

  • Yi, Minwoo;Yoo, Sungjun;Bae, Youngseok;Jang, Sunghoon;Ryoo, Joonhyung;Shin, Jinwoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.610-618
    • /
    • 2021
  • In this paper, a photonic-based microwave system technology is described, and a traveling-wave electro-optic modulator is designed and manufactured as a key component. The fabricated modulator is composed of a metal diffusion waveguide for optical transmission and a planar waveguide electrode on lithium niobate substrate for microwave transmission. The electro-optic response bandwidth of I and Q channels in a fabricated dual parallel Mach-Zehnder modulator were measured for 27.67 and 28.11 GHz, respectively. Photonic four times up-converted X-band frequency and linear frequency modulated signal were confirmed using the fabricated electro-optic modulator by S-band input signal. The confirmed broadband signal can be applied to a microwave system for surveillance and high-resolution ISAR imaging.

New insights into pathways of the dorsal scapular nerve and artery for selective dorsal scapular nerve blockade

  • Cho, Hyunho;Kang, Seungwoo;Won, Hyung-Sun;Yang, Miyoung;Kim, Yeon-Dong
    • The Korean Journal of Pain
    • /
    • v.32 no.4
    • /
    • pp.307-312
    • /
    • 2019
  • Background: The aim of this study was to clarify the topographical relationships between the dorsal scapular nerve (DSN) and the dorsal scapular artery (DSA) in the interscapular region to identify safe and convenient injection points related to DSN blockade. Methods: Thirty shoulders of embalmed Korean cadavers and 50 live subjects were used for dissection and ultrasound (US) analysis. Results: The running patterns of the DSA and DSN in the interscapular region were classified into 3 types. Type I was defined as nerves that were medial to the artery and parallel without changing location (80.0% of specimens). In type II (13.3%), the nerve and artery traversed one another only one time over their entire length. In type III (6.7%), the nerve and artery traversed one another, resembling a twist. Above the level of the scapular spine, the nerve was always medial to the artery. Below the scapular spine, the number of arteries was obviously decreased. Most of the arteries were lateral to the medial border of the scapula, except at the level of the superior angle of the scapula artery (SA). The positional tendency of the DSN toward the medial or lateral sides from the medial border of the scapula was similar. In US imaging of live subjects, the DSA was most observed at the level of the SA (94.0%). Conclusions: Results of this study enhance the current knowledge regarding the pathway of the DSN and DSA and provide helpful information for selective diagnostic nerve blocks in the interscapular region.

Experiment of proof-of-principle on prompt gamma-positron emission tomography (PG-PET) system for in-vivo dose distribution verification in proton therapy

  • Bo-Wi Cheon ;Hyun Cheol Lee;Sei Hwan You;Hee Seo ;Chul Hee Min ;Hyun Joon Choi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2018-2025
    • /
    • 2023
  • In our previous study, we proposed an integrated PG-PET-based imaging method to increase the prediction accuracy for patient dose distributions. The purpose of the present study is to experimentally validate the feasibility of the PG-PET system. Based on the detector geometry optimized in the previous study, we constructed a dual-head PG-PET system consisting of a 16 × 16 GAGG scintillator and KETEK SiPM arrays, BaSO4 reflectors, and an 8 × 8 parallel-hole tungsten collimator. The performance of this system as equipped with a proof of principle, we measured the PG and positron emission (PE) distributions from a 3 × 6 × 10 cm3 PMMA phantom for a 45 MeV proton beam. The measured depth was about 17 mm and the expected depth was 16 mm in the computation simulation under the same conditions as the measurements. In the comparison result, we can find a 1 mm difference between computation simulation and measurement. In this study, our results show the feasibility of the PG-PET system for in-vivo range verification. However, further study should be followed with the consideration of the typical measurement conditions in the clinic application.

Design of Face with Mask Detection System in Thermal Images Using Deep Learning (딥러닝을 이용한 열영상 기반 마스크 검출 시스템 설계)

  • Yong Joong Kim;Byung Sang Choi;Ki Seop Lee;Kyung Kwon Jung
    • Convergence Security Journal
    • /
    • v.22 no.2
    • /
    • pp.21-26
    • /
    • 2022
  • Wearing face masks is an effective measure to prevent COVID-19 infection. Infrared thermal image based temperature measurement and identity recognition system has been widely used in many large enterprises and universities in China, so it is totally necessary to research the face mask detection of thermal infrared imaging. Recently introduced MTCNN (Multi-task Cascaded Convolutional Networks)presents a conceptually simple, flexible, general framework for instance segmentation of objects. In this paper, we propose an algorithm for efficiently searching objects of images, while creating a segmentation of heat generation part for an instance which is a heating element in a heat sensed image acquired from a thermal infrared camera. This method called a mask MTCNN is an algorithm that extends MTCNN by adding a branch for predicting an object mask in parallel with an existing branch for recognition of a bounding box. It is easy to generalize the R-CNN to other tasks. In this paper, we proposed an infrared image detection algorithm based on R-CNN and detect heating elements which can not be distinguished by RGB images.

Impact of the spatial orientation of the patient's head, metal artifact reduction, and tube current on cone-beam computed tomography artifact expression adjacent to a dental implant: A laboratory study using a simulated surgical guide

  • Matheus Barros-Costa;Julia Ramos Barros-Candido;Matheus Sampaio-Oliveira;Deborah Queiroz Freitas;Alexander Tadeu Sverzut;Matheus L Oliveira
    • Imaging Science in Dentistry
    • /
    • v.54 no.2
    • /
    • pp.191-199
    • /
    • 2024
  • Purpose: The aim of this study was to evaluate image artifacts in the vicinity of dental implants in cone-beam computed tomography (CBCT) scans obtained with different spatial orientations, tube current levels, and metal artifact reduction algorithm (MAR) conditions. Materials and Methods: One dental implant and 2 tubes filled with a radiopaque solution were placed in the posterior region of a mandible using a surgical guide to ensure parallel alignment. CBCT scans were acquired with the mandible in 2 spatial orientations in relation to the X-ray projection plane (standard and modified) at 3 tube current levels: 5, 8, and 11 mA. CBCT scans were repeated without the implant and were reconstructed with and without MAR. The mean voxel and noise values of each tube were obtained and compared using multi-way analysis of variance and the Tukey test(α=0.05). Results: Mean voxel values were significantly higher and noise values were significantly lower in the modified orientation than in the standard orientation (P<0.05). MAR activation and tube current levels did not show significant differences in most cases of the modified spatial orientation and in the absence of the dental implant (P>0.05). Conclusion: Modifying the spatial orientation of the head increased brightness and reduced spatial orientation noise in adjacent regions of a dental implant, with no influence from the tube current level and MAR.

Ultrastructural changes in cristae of lymphoblasts in acute lymphoblastic leukemia parallel alterations in biogenesis markers

  • Ritika Singh;Ayushi Jain;Jayanth Kumar Palanichamy;T. C. Nag;Sameer Bakhshi;Archna Singh
    • Applied Microscopy
    • /
    • v.51
    • /
    • pp.20.1-20.12
    • /
    • 2021
  • We explored the link between mitochondrial biogenesis and mitochondrial morphology using transmission electron microscopy (TEM) in lymphoblasts of pediatric acute lymphoblastic leukemia (ALL) patients and compared these characteristics between tumors and control samples. Gene expression of mitochondrial biogenesis markers was analysed in 23 ALL patients and 18 controls and TEM for morphology analysis was done in 15 ALL patients and 9 healthy controls. The area occupied by mitochondria per cell and the cristae cross-sectional area was observed to be significantly higher in patients than in controls (p-value=0.0468 and p-value<0.0001, respectively). The mtDNA copy numbers, TFAM, POLG, and c-myc gene expression were significantly higher in ALL patients than controls (all p-values<0.01). Gene Expression of PGC-1α was higher in tumor samples. The analysis of the correlation between PGC-1α expression and morphology parameters i.e., both M/C ratio and cristae cross-sectional area revealed a positive trend (r=0.3, p=0.1). The increased area occupied by mitochondria and increased cristae area support the occurrence of cristae remodelling in ALL. These changes might reflect alterations in cristae dynamics to support the metabolic state of the cells by forming a more condensed network. Ultrastructural imaging can be useful for affirming changes occurring at a subcellular organellar level.