• Title/Summary/Keyword: Parallel flow type condenser

Search Result 12, Processing Time 0.03 seconds

Computer simulation for the performance analysis of automobile air conditioning system (자동차용 에어컨 시스템의 성능해석을 위한 컴퓨터 시뮬레이션)

  • 이건호;유정열;정종대;최규환
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.2
    • /
    • pp.202-216
    • /
    • 1998
  • A computer simulation for the performance analysis of automobile air conditioning components is carried out for the various operating conditions. The automobile air conditioning system consists of laminated type evaporator, swash plate type compressor, parallel flow type condenser, externally equalized thermostatic expansion valve and receiver drier. The overall heat transfer coefficient and the pressure drop in laminated type evaporator were obtained through experiments. In parallel flow type condenser, the performance analysis computer program using the empirical equation for heat transfer coefficient has been developed and the results are compared with experimental results. A model for matching the performance analysis programs of respective components .of automobile air conditioning system is introduced. Further, the effects of varying condenser size and refrigerant charge on the performance of automobile air conditioning system are discussed clearly.

  • PDF

A Study on the Performance Characteristics of Fin-type Heat Exchanger for the Automobile Air-Conditioners (자동차 공조용 핀형 열교환기의 성능특성에 관한 연구)

  • 홍경한;전상신;이승재;박찬수;권일욱;김재열;김병철;하옥남
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.4
    • /
    • pp.100-105
    • /
    • 2004
  • Fin-tube type(Fin-type) heat exchanger has been tested in order to replace the heat exchanger of parallel flow type(P.F -type) which is now widly used in automobile air conditioning system The following conclusions are drawn by the comparison of the characteristics of the heat exchangers. Evaporator and condenser capacities and COP(Coefficience of performance) were varied as with the compressor speed, outdoor air temperature and air flow rate changed, which much influenced on the characteristics of the air conditioning system Evaporator and condenser capacities were increased with increasing compressor speed and outdoor air temperature. Evaporator and condenser pressures of Fin-type were decreased by 7% and 5% respectively compared with those of P.F-type. The COP of Fin-type was decreased with increasing outdoor air temperature and compressor speed. The COP of P.F-type was decreased by 14% compared with that of Fin-type.

A Design Process for Reduction of Pressure Drop of Air-cooled Condenser for Waste Heat Recovery System (폐열 회수 시스템용 공랭식 응축기의 압력 손실 저감 설계)

  • Bae, Sukjung;Heo, Hyungseok;Park, Jeongsang;Lee, Hongyeol;Kim, Charnjung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.81-91
    • /
    • 2013
  • A novel design process of a parallel multi-flow type air-cooled condenser of a dual-loop waste heat recovery system with Rankine steam cycles for improving the fuel efficiency of gasoline automobiles has been investigated focusing on reduction of the pressure drop inside the micro-tubes. The low temperature condenser plays a role to dissipate heat from the system by condensing the low temperature loop working fluid sufficiently. However, the refrigerant has low evaporation temperature enough to recover the waste from engine coolant of about $100^{\circ}C$ but has small saturation enthalpy so that excessive mass flow rate of the LT working fluid, e.g., over 150 g/s, causes enormously large pressure drop of the working fluid to maintain the heat dissipation performance of more than 20 kW. This paper has dealt with the scheme to design the low temperature condenser that has reduced pressure drop while ensuring the required thermal performance. The number of pass, the arrangement of the tubes of each pass, and the positions of the inlet and outlet ports on the header are most critical parameters affecting the flow uniformity through all the tubes of the condenser. For the purpose of the performance predictions and the parametric study for the LT condenser, we have developed a 1-dimensional user-friendly performance prediction program that calculates feasibly the phase change of the working fluid in the tubes. An example is presented through the proposed design process and compared with an experiment.

Analysis of Absorption Refrigeration Cycles to Utilize Treated Sewage (하수처리수이용 흡수식냉동사이클의 해석)

  • Lee, Y.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.2
    • /
    • pp.288-298
    • /
    • 1996
  • The gas-fired absorption refrigeration system to utilize treated sewage is available for environmental protection and energy conservation. Simulation analysis on the double-effect absorption refrigeration cycles with parallel or series flow type has been performed. The working fluid is Lithium Bromide and water solution. The main purpose of this study is evaluating the possibilities of effective utilization of treated sewage as a cooling water for the absorber and condenser. The efficiency of a couple of cycles has been studied and simulation results show that higher coefficient of performance could be obtained for parallel flow type. The other purpose of the present study is to determine the optimum designs and operating conditions based on the operating constraints and the coefficent of performance in the paralledl flow type.

  • PDF

Modeling of Parallel Flow Type Condenser for Automotive Air Conditioning System (자동차 공조시스템용 평행류형 응축기의 모델링)

  • Kim, Il-Gyoum;Park, Woo-Cheul;Lee, Chae-Moon
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.1
    • /
    • pp.29-38
    • /
    • 2004
  • 자동자 공조용 시스템에 사용되는 평행류형 응축기에 대하여 실제 운전조건에서 성능을 예측할 수 있는 모델링을 개발하였다. 모델링에 사용된 방법은 유효도-전달단위수법이고, 국소구간을 나누어 해석하는 국소구간법을 사용하였다. 모델링에 사용된 작동유체는 HFC134a이며, 응축기를 흐르면서 방생하는 냉매의 압력손실에 대한 물성변화를 포함시켜 보다 실제에 가깝게 해석하였다. 모델링에는 공기측과 냉매측의 열전달계수와 압력손실계수에 관한 상관식들을 포함하고 있다. 모델링의 결과는 실험값과 비교하여 비교적 잘 일치한다.

Simulation of a two-stage absorption heat pump cycle using treated sewage (하수처리수 이용 흡수식 열펌프 사이클의 시뮬레이션)

  • 이용화;신현준;최국광
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.3
    • /
    • pp.422-430
    • /
    • 1999
  • This paper concerns the study of a two-stage absorption heat pump cycle to utilize treated sewage. This two-stage cycle consists of coupling double-effect with parallel or series flow type and single effect cycle so that the first stage absorber and condenser produces hot water to evaporate refrigerant in the evaporator of the second stage. The effects of operating variables such as absorber temperature on the coefficient of performance have been studied for two-stage absorption heat pump cycle. The working fluid is lithium bromide and water solution. The efficiency of the two-stage absorption heat pump cycle has been studied and simulation results show that higher coefficient of performance could be obtained for the first stage with parallel flow type. The optimum ratio of solution distribution can be shown by considering the COP, the crystallization of solution and the generator temperature.

  • PDF

Heating and Cooling System using the Sewage Source Absorption Refrigeration and Heat Pump Cycle (하수열을 이용한 냉난방시스템에 관한 연구)

  • Lee, Yong-Hwa;Shin, Hyun-Joon;Yoon, Hee-Chul;Park, Hyun-Gun
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.4
    • /
    • pp.19-26
    • /
    • 2007
  • This paper concerns the study of absorption refrigeration and heat pump cycle to use sewage. Simulation analysis on the double-effect absorption refrigeration cycle with parallel and two-stage heat pump cycle has been performed. The working fluid is Lithium Bromide and water solution. The absorption refrigeration cycle use sewage as a cooling water for the absorber and condenser, and absorption refrigeration cycle does that as a chilled water for the evaporator of the first stage cycle. And the two-stage cycle consists of coupling double-effect with parallel and single effect cycle so that the first stage absorber and condenser produces heating water to evaporate refrigerant in the evaporator of the second stage. The effects of operating variables such as a absorber temperature on the coefficient of performance have been studied for absorption refrigeration and heat pump cycle.

An Experimental Study on the Performance of Automobile Air Conditioning System with Variations of Charging Conditions (냉매충전량 변화에 따른 자동차에어컨 성능의 실험적 고찰)

  • 이건호;정종대;최규환;유정열
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.203-211
    • /
    • 1998
  • The system performance of an automobile air conditioning system with variations of charging conditions has been investigated experimentally. An automobile air conditioning system was composed of laminated type evaporator, parallel flow type condenser, swash plate type com-pressor, externally equalized thermostatic expansion valve and receiver drier. The objective of this study was to quantify the influence of the refrigerant charge under the steady state operation of an automobile air conditioning system. The results indicated that a 10% undercharge caused a 10% reduction in the capacity of evaporator.

  • PDF

Separate type heat pipe performance comparison by the heat exchanger shapes (열교환기 형상에 따른 분리형 히트파이프 성능 비교)

  • Jeon, Sung-Taek;Cho, Jin-Pyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.723-729
    • /
    • 2016
  • This study compared fin-tube and parallel-flow heat pipes for their sensible heat exchange rate, heat recovery amount, and air-side pressure drop. Tests were done with different refrigerant charging rates of 40-60% vol. and air flow rates of 300-1,400. The sensible heat exchange rate was highest for both types of heat pipes at a working fluid charge of 40% vol. and low flow rate. For the parallel-flow heat pipe, the 60% vol. charge is too high and results in a low sensible heat exchange rate. The reason is that the thicker liquid film of the tube wall deteriorates the heat transfer effect. Hence, the optimal charging rate is 40 to 50% vol. The evaporator heat pipe has a larger air-side pressure drop than the condenser section heat pipe. The reason is considered to be condensation water arising from the evaporator surface. Compared to the fin-tube heat pipe, the parallel-flow heat pipe showed better performance with a working fluid charging rate of 48%, volume of 41%, and an air-side pressure drop about 37%.

Cycle Analysis of Air-Cooled Double-Effect Absorption Cooling System Using H2O/LiBr+HO(CH2)3OH (H2O/LiBr+HO(CH2)3OH계 공냉형 이중효용 흡수식 냉방시스템의 사이클 해석)

  • Kwon, Oh-Kyung;Moon, Choon-Geun;Yoon, Jung-In
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.2
    • /
    • pp.272-280
    • /
    • 1999
  • A cycle analysis was achieved to predict the characteristics by comprehensive modeling and simulation of an air-cooled, double-effect absorption system using a new $H_2O/LiBr+HO(CH_2)_3OH$ solution. The simulation results showed that the new working fluid may provide the crystallization limit 8% higher than the conventional $H_2O/LiBr$ solution. With a crystallization margin of 3wt%(weight%), the optimal solution distribution ratio was found in the range of 36 to 40%. Variation of cooling air Inlet temperature has a sensitive effect on the cooling COP and corrosion problem. The simulation of heat exchangers with UA value revealed that the absorber and the evaporator are relatively important for an air-cooled system compared with the condenser and the low temperature generator. The effect of cooling air flow rate, circulation weak solution flow rate and chilled water inlet temperature were also examined. The new working fluid may provide the COP approximately 5% higher than the conventional $H_2O/LiBr$ solution.